【題目】將圓上每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?/span>2倍,得曲線C.
(1)寫出C的參數(shù)方程;
(2)設直線與C的交點為,以坐標原點為極點,x軸正半軸為極坐標建立極坐標系,求過線段的中點且與垂直的直線的極坐標方程.
科目:高中數(shù)學 來源: 題型:
【題目】設p:實數(shù)x滿足,其中,命題實數(shù)滿足
|x-3|≤1 .
(1)若且為真,求實數(shù)的取值范圍;
(2)若是的充分不必要條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1)若,求在處的切線方程;
(2)若對于任意的正數(shù),恒成立,求實數(shù)的值;
(3)若函數(shù)存在兩個極值點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax﹣cosx,a≠0.
(1)若函數(shù)f(x)為單調函數(shù),求a的取值范圍;
(2)若x∈[0,2π],求:當a≥時,函數(shù)f(x)僅有一個零點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知{an}為等差數(shù)列,前n項和為Sn(n∈N*),{bn}是首項為2的等比數(shù)列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.
(1)求{an}和{bn}的通項公式;
(2)求數(shù)列{a2nbn}的前n項和(n∈N*).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,
已知圓和圓.
(1)若直線過點,且被圓截得的弦長為,
求直線的方程;(2)設P為平面上的點,滿足:
存在過點P的無窮多對互相垂直的直線和,
它們分別與圓和圓相交,且直線被圓
截得的弦長與直線被圓截得的弦長相等,試求所有滿足條件的點P的坐標。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,橢圓的長軸長為4.
(1)求橢圓的方程;
(2)已知直線與橢圓交于兩點,是否存在實數(shù)使得以線段為直徑的圓恰好經過坐標原點?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是直角梯形,AB∥CD,BC⊥CD,側面PAB為等邊三角形,AB=BC=2CD=2.
(Ⅰ)證明:AB⊥PD;
(Ⅱ)若PD=2,求直線PC與平面PAB所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com