精英家教網 > 高中數學 > 題目詳情
數列
2
5
,2
2
,
11
,…,則2
5
是該數列的( 。
A、第6項B、第7項
C、第10項D、第11項
分析:觀察數列各項的特點,把第三項根號外的移到根號里面,只觀察被開方數,可知數列是等差數列2,5,8,11,的每一項開方,所以用等差數列看出20是第七項.
解答:解:由數列
2
,
5
,2
2
,
11
,
2
5
,
8
11
,
可知數列是等差數列2,5,8,11,的每一項開方,
而2
5
=
20
,
故選B.
點評:本題要求理解數列及其有關概念;了解數列和函數之間的關系;了解數列的通項公式,并會用通項公式寫出數列的任意一項;對于比較簡單的數列,會根據其前幾項的特征寫出它的一個通項公式.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如果有窮數列a1,a2,a3,…,am(m為正整數)滿足a1=am,a2=am-1,…,am=a1.即ai=am-i+1(i=1,2,…,m),我們稱其為“對稱數列“例如,數列1,2,5,2,1與數列8,4,2,2,4,8都是“對稱數列”.設{bn}是項數為2m(m>1,m∈N*)的“對稱數列”,并使得1,2,22,23,…,2m-1依次為該數列中連續(xù)的前m項,則數列{bn}的前2010項和S2010可以是
(1)22010-1     (2)21006-2       (3)2m+1-22m-2010-1
其中正確命題的個數為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數學 來源: 題型:

13、已知數列{an}的通項公式為an=(2n-1)•2n,我們用錯位相減法求其前n項和Sn:由Sn=1×2+3×22+5×23+…(2n-1)•2n得2Sn=1×22+3×23+5×24+…(2n-1)•2n+1,兩式項減得:-Sn=2+2×22+2×23+…+2×2n-(2n-1)•2n+1,求得Sn=(2n-3)•2n+1+6.類比推廣以上方法,若數列{bn}的通項公式為bn=n2•2n,
則其前n項和Tn=
(n2-2n+3)•2n+1-6

查看答案和解析>>

科目:高中數學 來源: 題型:

若有窮數列a1,a2…an(n是正整數),滿足a1=an,a2=an-1,…,an=a1即ai=an-i+1(i是正整數,且1≤i≤n),就稱該數列為“對稱數列”.已知數列{bn}是項數為7的對稱數列,且b1,b2,b3,b4成等差數列,b1=2,b4=11試寫出{bn}所有項
2,5,8,11,8,5,2
2,5,8,11,8,5,2

查看答案和解析>>

科目:高中數學 來源: 題型:

兩千多年前,古希臘畢達哥拉斯學派的數學家曾經在沙灘上研究數學問題,他們在沙灘上畫點或用小石子來表示數,按照點或小石子能排列的形狀對數進行分類,如圖2中的實心點個數1,5,12,22,…,被稱為五角形數,其中第1個五角形數記作a1=1,第2個五角形數記作a2=5,第3個五角形數記作a3=12,第4個五角形數記作a4=22,…,若按此規(guī)律繼續(xù)下去,得數列{an},則an-an-1=
3n-2(n≥2)
3n-2(n≥2)

查看答案和解析>>

科目:高中數學 來源: 題型:

設集合W是滿足下列兩個條件的無窮數列{an}的集合:①
an+an+2
2
an+1
②an≤M,其中n∈N*,M是與n無關的常數
(1)若{an}是等差數列,Sn是其前n項的和,a3=4,S3=18,試探究{Sn}與集合W之間的關系;
(2)設數列{bn}的通項為bn=5n-2n,且{bn}∈W,M的最小值為m,求m的值;
(3)在(2)的條件下,設Cn=
1
5
[bn+(m-5)n]+
2
,求證:數列{Cn}中任意不同的三項都不能成為等比數列.

查看答案和解析>>

同步練習冊答案