在空間四邊形ABCD各邊AB、BC、CD、DA上分別取E、F、G、H四點(diǎn),如果EF、GH相交于點(diǎn)P,那么點(diǎn)P必在直線
AC
AC
上.
分析:根據(jù)平面的基本性質(zhì)公理,利用兩個平面的公共點(diǎn)在兩平面的公共直線上來判斷即可.
解答:解:如圖:

∵E、F∈平面ABC,∴EF?平面ABC;
同理GH?平面ADC,又EF∩GH=P,∴P∈平面ABC,P∈平面ACD,
平面ABC∩平面ACD=CD,∴P∈AC.
故答案是AC.
點(diǎn)評:本題考查平面的基本性質(zhì)及推論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

8、在空間四邊形ABCD的各邊AB,BC,CD,DA上依次取點(diǎn)E,F(xiàn),G,H,若EH、FG所在直線相交于點(diǎn)P,則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間四邊形ABCD的邊AB,BC,CD,DA上分別取E,F(xiàn),G,H使
AE
EB
=
AH
HD
=1,
CF
FB
=
CG
GD
=
1
2
,則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間四邊形ABCD中,連接AC、BD,若△BCD是正三角形,且E為其中心,則
AB
+
1
2
BC
-
3
2
DE
-
AD
化簡后的結(jié)果為( 。
A、
AB
B、2
BD
C、
0
D、2
DE

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•順義區(qū)一模)如圖,已知在空間四邊形ABCD中,AB=AC=DB=DC,E為BC的中點(diǎn).
(Ⅰ)求證:平面ADE⊥平面ABC;
(Ⅱ)若AB=5,BC=6,AD=4,求幾何體ABCD的體積;
(Ⅲ)在(Ⅱ)的條件下,若G為△ABD的重心,試問在線段BC上是否存在點(diǎn)F,使GF∥平面ADE?若存在,請指出點(diǎn)F在BC上的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點(diǎn).若AC=BD=a,若四邊形EFGH的面積為
3
8
a2
,則異面直線AC與BD所成的角為(  )
A、30°B、60°
C、120°D、60°或120°

查看答案和解析>>

同步練習(xí)冊答案