分析 由已知中,AC=3,BC=4,AB=5,可得三角形ABC為直角三角形,我們可以判斷出以斜邊AB為軸旋轉(zhuǎn)一周,所得旋轉(zhuǎn)體的形狀是AB邊的高CO為底面半徑的兩個(gè)圓錐組成的組合體,計(jì)算出底面半徑及兩個(gè)圓錐高的和,代入圓錐體積公式,即可求出旋轉(zhuǎn)體的體積;又由該幾何體的表面積是兩個(gè)圓錐的側(cè)面積之和,分別計(jì)算出兩個(gè)圓錐的母線長(zhǎng),代入圓錐側(cè)面積公式,即可得到答案.
解答 解:∵在三角形ABC中,AC=3,BC=4,AB=5,
∴三角形ABC為直角三角形,
如圖以斜邊AB為軸旋轉(zhuǎn)一周,得旋轉(zhuǎn)體是以AB邊的高CO為底面半徑的兩個(gè)圓錐組成的組合體
∵AC=3,BC=4,AB=5,
∴CO=3×45=125,
故此旋轉(zhuǎn)體的體積V=13•πr2•h=13•π•CO2•AB=485π…6分
又∵AC=3,BC=4,
故此旋轉(zhuǎn)體的表面積S=πr•(l+l′)=2πCO•(AC+BC)=84π5.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是旋轉(zhuǎn)體,圓錐的體積和表面積,其中根據(jù)已知判斷出旋轉(zhuǎn)所得旋轉(zhuǎn)體的形狀及底面半徑,高,母線長(zhǎng)等關(guān)鍵幾何量,是解答本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若α>β,則sinα>sinβ | |
B. | 數(shù)列{an},{bn}為等比數(shù)列,則數(shù)列{an+bn}為等比數(shù)列 | |
C. | 函數(shù)f(x),g(x)均為增函數(shù),則函數(shù)f(x)•g(x)為增函數(shù) | |
D. | 在△ABC中,若a>b,則sinA>sinB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=2sin2x | B. | y=2sin(2x-π3) | C. | y=2sin(2x-π6) | D. | y=2sin(x-π6) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,2) | B. | (-1,2) | C. | (-∞,-2)∪(1,+∞) | D. | (-2,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=sin(4x−π5) | B. | y=sin(2x−2π5) | C. | y=sin(4x−2π5) | D. | y=sin(4x−3π5) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com