【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且sinA+ cosA=2.
(Ⅰ)求角A的大;
(Ⅱ)現(xiàn)給出三個(gè)條件:①a=2;②B=45°;③c= b.試從中選出兩個(gè)可以確△ABC的條件,寫出你的選擇,并以此為依據(jù)求△ABC的面積.(只寫出一個(gè)方案即可)

【答案】解:(Ⅰ)依題意得2sin(A+ )=2,即sin(A+ )=1,

∵0<A<π,

<A+ ,

∴A+ = ,

∴A=

(Ⅱ)選擇①②由正弦定理 = ,得b= sinB=2 ,

∵A+B+C=π,

∴sinC=sin(A+B)=sinAcosB+cosAsinB= +

∴S= absinC= ×2×2 × = +1.


【解析】(1)根據(jù)簡(jiǎn)單的三角恒等變換可得sin(A+ )=1,從而得出A的大小,(2)選擇①②由正弦定理得出b的值,再由三角形內(nèi)角和為π,sinC=sin(A+B),從而解得S的大小.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C所對(duì)邊分別為a,b,c.向量 =(a, b), =(sinB,﹣cosA),且
(1)求A的大;
(2)若| |= ,求cosC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)西部某省4A級(jí)風(fēng)景區(qū)內(nèi)住著一個(gè)少數(shù)民族村,該村投資了800萬(wàn)元修復(fù)和加強(qiáng)民俗文化基礎(chǔ)設(shè)施,據(jù)調(diào)查,修復(fù)好村民俗文化基礎(chǔ)設(shè)施后,任何一個(gè)月內(nèi)(每月按30天計(jì)算)每天的旅游人數(shù)f(x)與第x天近似地滿足f(x)=8+ (千人),且參觀民俗文化村的游客人均消費(fèi)g(x)近似地滿足g(x)=143﹣|x﹣22|(元).
(1)求該村的第x天的旅游收入p(x)(單位千元,1≤x≤30,x∈N*)的函數(shù)關(guān)系;
(2)若以最低日收入的20%作為每一天純收入的計(jì)量依據(jù),并以純收入的5%的稅率收回投資成本,試問(wèn)該村在兩年內(nèi)能否收回全部投資成本?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 是雙曲線 的右焦點(diǎn),過(guò)點(diǎn) 的一條漸近線的垂線,垂足為 ,線段 相交于點(diǎn) ,記點(diǎn) 的兩條漸近線的距離之積為 ,若 ,則該雙曲線的離心率是( )
A.
B.2
C. 3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C:(x﹣3)2+(y﹣4)2=4,直線l過(guò)定點(diǎn)A(1,0).
(1)若l與圓C相切,求l的方程;
(2)若l與圓C相交于P、Q兩點(diǎn),若|PQ|=2 ,求此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,若函數(shù)g(x)=f(x)﹣m有三個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)的圖象與函數(shù)h(x)=x+ +2的圖象關(guān)于點(diǎn)A(0,1)對(duì)稱.
(1)求f(x)的解析式;
(2)若g(x)=f(x)x+ax,且g(x)在區(qū)間[0,2]上為減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某樂(lè)隊(duì)參加一戶外音樂(lè)節(jié),準(zhǔn)備從3首原創(chuàng)新曲和5首經(jīng)典歌曲中隨機(jī)選擇4首進(jìn)行演唱.
(1)求該樂(lè)隊(duì)至少演唱1首原創(chuàng)新曲的概率;
(2)假定演唱一首原創(chuàng)新曲觀眾與樂(lè)隊(duì)的互動(dòng)指數(shù)為a(a為常數(shù)),演唱一首經(jīng)典歌曲觀眾與樂(lè)隊(duì)的互動(dòng)指數(shù)為2a,求觀眾與樂(lè)隊(duì)的互動(dòng)指數(shù)之和X的概率分布及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=|xex|,又g(x)=f2(x)﹣tf(x)(t∈R),若滿足g(x)=﹣1的x有四個(gè),則t的取值范圍是

查看答案和解析>>

同步練習(xí)冊(cè)答案