【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線.

(1)求的普通方程和的直角坐標(biāo)方程;

(2)若曲線交于,兩點(diǎn),,的中點(diǎn)為,點(diǎn),求的值.

【答案】1的普通方程為的直角坐標(biāo)方程為;(23.

【解析】

1)直接消去參數(shù)可得C1的普通方程;結(jié)合ρ2x2+y2xρcosθC2的直角坐標(biāo)方程;(2)將兩圓的方程作差可得直線AB的方程,寫出AB的參數(shù)方程,與圓C2聯(lián)立,化為關(guān)于t的一元二次方程,由參數(shù)t的幾何意義及根與系數(shù)的關(guān)系求解.

1)曲線的普通方程為.

,,得曲線的直角坐標(biāo)方程為.

2)將兩圓的方程作差得直線的方程為.

點(diǎn)在直線上,設(shè)直線的參數(shù)方程為為參數(shù)),

代入化簡(jiǎn)得,所以.

因?yàn)辄c(diǎn)對(duì)應(yīng)的參數(shù)為,

所以

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)求在區(qū)間上的值域;

2)是否存在實(shí)數(shù),對(duì)任意給定的,在存在兩個(gè)不同的使得,若存在,求出的范圍,若不存在,說(shuō)出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程:在直角坐標(biāo)系中,曲線為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的極坐標(biāo)方程;

2)已知點(diǎn),直線的極坐標(biāo)方程為,它與曲線的交點(diǎn)為,,與曲線的交點(diǎn)為,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中,平面平面,,.

(1)求證:平面平面;

(2)若與平面所成的線面角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線經(jīng)過點(diǎn),過作傾斜角互補(bǔ)的兩條不同直線、.

1)求拋物線的方程及準(zhǔn)線方程;

2)設(shè)直線分別交拋物線、兩點(diǎn)(均不與重合,如圖),記直線的斜率為正數(shù),若以線段為直徑的圓與拋物線的準(zhǔn)線相切,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若,求曲線在點(diǎn)處的切線方程;

2)討論函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,,該橢圓與軸正半軸交于點(diǎn),且是邊長(zhǎng)為的等邊三角形.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過點(diǎn)任作一直線交橢圓于兩點(diǎn),平面上有一動(dòng)點(diǎn),設(shè)直線,的斜率分別為,,,且滿足,求動(dòng)點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中, ,, PA=AB=BC=2. EPC的中點(diǎn).

1)證明:

2)求三棱錐P-ABC的體積;

3 證明:平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的上下兩個(gè)焦點(diǎn)分別為 ,過點(diǎn)軸垂直的直線交橢圓、兩點(diǎn), 的面積為,橢圓的離心力為

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)已知為坐標(biāo)原點(diǎn),直線 軸交于點(diǎn),與橢圓交于 兩個(gè)不同的點(diǎn),若存在實(shí)數(shù),使得,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案