已知橢圓上任一點(diǎn)P,由點(diǎn)P向x軸作垂線PQ,垂足為Q,點(diǎn)M在PQ上,且,點(diǎn)M的軌跡為C.
(Ⅰ)求曲線C的方程;
(Ⅱ)過點(diǎn)作直線l與曲線C交于A、B兩點(diǎn),設(shè)N是過點(diǎn)且平行于x軸的直線上一動(dòng)點(diǎn),滿足 (O為原點(diǎn)),且四邊形OANB為矩形,求出直線l的方程.

(1)設(shè)是曲線C上任一點(diǎn),PM⊥x軸,,
所以點(diǎn)P的坐標(biāo)為
點(diǎn)P在橢圓上,所以
因此曲線C的方程是
(2)當(dāng)直線l的斜率不存在時(shí),顯然不滿足條件,
所以設(shè)直線l的方程為,
直線l與橢圓交于
N點(diǎn)所在直線方程為,
     得  

,即
因?yàn)?IMG style="WIDTH: 97px; HEIGHT: 16px; VERTICAL-ALIGN: middle" src="http://thumb.zyjl.cn/pic1/upload/papers/g02/20121003/201210031249214801770.png">,四邊形OANB為平行四邊形
又因OANB是矩形,則,
所以
設(shè),由
,
即N點(diǎn)在直線,四邊形OANB為矩形,
直線l的方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年青海省片區(qū)高三年級(jí)大聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)

已知橢圓上任一點(diǎn)P,由點(diǎn)P向x軸作垂線段PQ,垂足為Q,點(diǎn)M在PQ上,且,點(diǎn)M的軌跡為C.

(Ⅰ)求曲線C的方程;

(Ⅱ)過點(diǎn)D(0,-2)作直線l與曲線C交于A、B兩點(diǎn),設(shè)N是過點(diǎn)且平行于軸的直線上一動(dòng)點(diǎn),滿足(O為原點(diǎn)),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線的方程;若不存在說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓數(shù)學(xué)公式上任一點(diǎn)P到兩個(gè)焦點(diǎn)的距離的和為數(shù)學(xué)公式,P與橢圓長(zhǎng)軸兩頂點(diǎn)連線的斜率之積為數(shù)學(xué)公式.設(shè)直線l過橢圓C的右焦點(diǎn)F,交橢圓C于兩點(diǎn)A(x1,y1),B(x2,y2).
(Ⅰ)若數(shù)學(xué)公式(O為坐標(biāo)原點(diǎn)),求|y1-y2|的值;
(Ⅱ)當(dāng)直線l與兩坐標(biāo)軸都不垂直時(shí),在x軸上是否總存在點(diǎn)Q,使得直線QA、QB的傾斜  角互為補(bǔ)角?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓上任一點(diǎn)P,由點(diǎn)P向x軸作垂線段PQ,垂足為Q,點(diǎn)M在PQ上,且,點(diǎn)M的軌跡為C.

   (1)求曲線C的方程;

   (2)過點(diǎn)D(0,-2)作直線l與曲線C交于A、B兩點(diǎn),設(shè)N是過點(diǎn)且以 為方向向量的直線上一動(dòng)點(diǎn),滿足(O為原點(diǎn)),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線的方程;若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年云南省玉溪一中高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知橢圓上任一點(diǎn)P,由點(diǎn)P向x軸作垂線段PQ,垂足為Q,點(diǎn)M在PQ上,且,點(diǎn)M的軌跡為C.
(1)求曲線C的方程;
(2)過點(diǎn)D(0,-2)作直線l與曲線C交于A、B兩點(diǎn),設(shè)N是過點(diǎn)且平行于x軸的直線上一動(dòng)點(diǎn),滿足(O為原點(diǎn)),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線的方程;若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年云南省玉溪一中高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知橢圓上任一點(diǎn)P,由點(diǎn)P向x軸作垂線段PQ,垂足為Q,點(diǎn)M在PQ上,且,點(diǎn)M的軌跡為C.
(1)求曲線C的方程;
(2)過點(diǎn)D(0,-2)作直線l與曲線C交于A、B兩點(diǎn),設(shè)N是過點(diǎn)且平行于x軸的直線上一動(dòng)點(diǎn),滿足(O為原點(diǎn)),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線的方程;若不存在說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案