函數(shù)的定義域為,若存在常數(shù),使得對一切實數(shù)均成立,則稱為“圓錐托底型”函數(shù).
(1)判斷函數(shù),是否為“圓錐托底型”函數(shù)?并說明理由.
(2)若是“圓錐托底型” 函數(shù),求出的最大值.
(3)問實數(shù)、滿足什么條件,是“圓錐托底型” 函數(shù).
(1)是,不是,(2),(3)

試題分析:(1)新定義問題,必須讀懂題意,嚴格按定義進行等價轉(zhuǎn)化.本題判斷函數(shù)是否為“圓錐托底型”函數(shù),即判斷是否存在常數(shù),使得對一切實數(shù)均成立,若成立必須證明,否則給出反例.本題解題關(guān)鍵在于常數(shù)的確定. ,所以可確定常數(shù)而由可知無論常數(shù)為什么正數(shù),總能取較小的數(shù)比它小,即總能舉個反例,如當時,就不成立.(2)本題實質(zhì)按新定義轉(zhuǎn)化為不等式恒成立問題:存在,使得對于任意實數(shù)恒成立.即當時,,而取得最小值2,.(3)本題是討論滿足不等式恒成立的條件.即實數(shù)、滿足什么條件,存在常數(shù),使得對一切實數(shù)均成立.當時,,無限制條件;當時,,需,否則若,則當時,,即不能恒成立;若,則.
試題解析:(1).,即對于一切實數(shù)使得成立,“圓錐托底型” 函數(shù).          2分
對于,如果存在滿足,而當時,由,,得,矛盾,不是“圓錐托底型” 函數(shù).     5分
(2)是“圓錐托底型” 函數(shù),故存在,使得對于任意實數(shù)恒成立.
時,,此時當時,取得最小值2,     9分
而當時,也成立.
的最大值等于.        10分
(3)①當,時,,無論取何正數(shù),取,則有,
不是“圓錐托底型” 函數(shù).      12分
②當時,,對于任意,此時可取是“圓錐托底型” 函數(shù).      14分
③當,時,,無論取何正數(shù),取.有,不是“圓錐托底型” 函數(shù).      16分
④當,時,,無論取何正數(shù),取,有,不是“圓錐托底型” 函數(shù).
由上可得,僅當時,是“圓錐托底型” 函數(shù).    18分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已函數(shù).
(1)作出函數(shù)的圖像;
(2)若對任意,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若函數(shù),若,則實數(shù)的取值范圍是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設兩條直線的方程分別為,已知是方程的兩個實根,且,則這兩條直線之間的距離的最大值和最小值分別是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞增.若實數(shù)a滿足f(log2a)+≤2f(1),則a的取值范圍是 (  )
A.[1,2]
B.
C.
D.(0,2]

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

定義在區(qū)間的奇函數(shù)為增函數(shù),偶函數(shù)在區(qū)間的圖象與的圖象重合,設,給出下列不等式:
      ②
      ④其中成立的是(     )
A.①與④B.②與③C.①與③D.②與④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若函數(shù)為區(qū)間[﹣1,1]上的奇函數(shù),則它在這一區(qū)間上的最大值是.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)是定義域為的偶函數(shù). 當時, 若關(guān)于的方程有且只有7個不同實數(shù)根,則實數(shù)的取值范圍是      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

”是“函數(shù)在區(qū)間內(nèi)單調(diào)遞增”的(   )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案