【題目】如圖,直三棱柱的底面是邊長為2的正三角形,分別是的中點(diǎn)。
(1)證明:平面平面;
(2)若直線與平面所成的角為,求三棱錐的體積.
【答案】見解析
【解析】
試題分析:(1)證明面面垂直,實(shí)質(zhì)是證明線面垂直,由題意可轉(zhuǎn)化為證明平面,而證明線面垂直,一般利用線面垂直判定定理,即從線線垂直出發(fā)給予證明,而線線垂直的尋找與證明往往需要結(jié)合平幾知識,如本題利用正三角形性質(zhì)得,而由直三棱柱性質(zhì)可推導(dǎo)得(2)先根據(jù)線面垂直確定線面角:設(shè)AB的中點(diǎn)為D,證明平面,則直線直線與平面所成的角,由直三棱柱性質(zhì)易得三棱錐的高,最后根據(jù)三棱錐體積公式求體積.
試題解析:(I)如圖,因?yàn)槿庵?/span>是直三棱柱,
所以,又是正三角形 的邊的中點(diǎn),
所以,因此平面,而平面,
所以平面平面。
(2)設(shè)的中點(diǎn)為,連接,因?yàn)?/span>是正三角形,所以,又三棱柱是直三棱柱,所以,因此平面,于是直線與平面所成的角,由題設(shè)知,
所以
在中,,所以
故三棱錐的體積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱中,,,點(diǎn)在線段上.
(1)若是中點(diǎn),證明:平面;
(2)當(dāng)長是多少時,三棱錐的體積是三棱柱的體積的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)在區(qū)間 上有最大值,最小值.
(1)求函數(shù)的解析式;
(2)設(shè).若在時恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】類比平面幾何中的命題:“垂直于同一直線的兩條直線平行”,在立體幾何中,可以得到命題“__________”,這個類比命題的真假性是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列說法,正確的個數(shù)是
①若兩直線的傾斜角相等,則它們的斜率也一定相等;
②一條直線的傾斜角為30°;
③傾斜角為0°的直線只有一條;
④直線的傾斜角α的集合{α|0°≤α<180°}與直線集合建立了一一對應(yīng)關(guān)系.
A.0 B.1
C.2 D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(1)求的極值;
(2)設(shè)≤,記在上的最大值為,求函數(shù)的最小值;
(3)設(shè)函數(shù)(為常數(shù)),若使≤≤在上恒成立的實(shí)數(shù)有且只有一個,求實(shí)數(shù)和的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國乒乓球隊(duì)備戰(zhàn)里約奧運(yùn)會熱身賽暨選拔賽于2016年7月14日在山東威海開賽.種子選手與,,三位非種子選手分別進(jìn)行一場對抗賽,按以往多次比賽的統(tǒng)計(jì),獲勝的概率分別為,,,且各場比賽互不影響.
(1)若至少獲勝兩場的概率大于,則入選征戰(zhàn)里約奧運(yùn)會的最終大名單,否則不予入選,問是否會入選最終的大名單?
(2)求獲勝場數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三維柱形圖中柱的高度表示的是( )
A. 各分類變量的頻數(shù) B. 分類變量的百分比
C. 分類變量的樣本數(shù) D. 分類變量的具體值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com