【題目】定義在上的函數(shù)滿足,,且當時,,則方程在上所有根的和為( )
A.B.C.D.
【答案】C
【解析】
利用題意可得出函數(shù)的圖象關(guān)于直線對稱,關(guān)于點對稱,并且周期為,作出圖象得知,函數(shù)的圖象與函數(shù)在上沒有交點,并且函數(shù)在上的圖象關(guān)于點對稱,且函數(shù)在區(qū)間上的圖象也關(guān)于點對稱,然后利用對稱性得出兩個函數(shù)交點橫坐標之和.
,即,,所以,函數(shù)是以為周期的周期函數(shù).
又,則函數(shù)的圖象關(guān)于直線對稱.
,,則函數(shù)的圖象關(guān)于點對稱,易知函數(shù)的圖象也關(guān)于點對稱,如下圖所示:
函數(shù)的圖象與函數(shù)在上沒有交點,并且函數(shù)在上的圖象關(guān)于點對稱,且函數(shù)在區(qū)間上的圖象也關(guān)于點對稱,兩個函數(shù)在區(qū)間上共有個公共點,且這些公共點呈現(xiàn)對關(guān)于點對稱,因此,方程在上所有根的和為.
故選:C.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱ABC—A1B1C1中,側(cè)棱與底面垂直,∠BAC=90°,AB=AC=AA1=2,點M,N分別為A1B和B1C1的中點.
(1)求異面直線A1B與NC所成角的余弦值;
(2)求A1B與平面NMC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校從參加高一年級期末考試的學生中抽出60名學生,將其數(shù)學成績(均為整數(shù))分成六段, …后,畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(1)求第四小組的頻率,補全頻率分布直方圖,并估計該校學生的數(shù)學成績的中位數(shù).
(2)從被抽取的數(shù)學成績是分以上(包括分)的學生中選兩人,求他們在同一分數(shù)段的概率.
(3)假設(shè)從全市參加高一年級期末考試的學生中,任意抽取個學生,設(shè)這四個學生中數(shù)學成績?yōu)?0分以上(包括分)的人數(shù)為(以該校學生的成績的頻率估計概率),求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】雙曲線的方程是-y2=1.
(1)直線l的傾斜角為,被雙曲線截得的弦長為,求直線l的方程;
(2)過點P(3,1)作直線l′,使其被雙曲線截得的弦恰被P點平分,求直線l′的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)是定義在 上的偶函數(shù),當時, ).
(1)當時,求的解析式;
(2)若,試判斷的上單調(diào)性,并證明你的結(jié)論;
(3)是否存在,使得當時, 有最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年秋季,我省高一年級全面實行新高考政策,為了調(diào)查學生對新政策的了解情況,準備從某校高一三個班級抽取10名學生參加調(diào)查.已知三個班級學生人數(shù)分別為40人,30人,30人.考慮使用簡單隨機抽樣、分層抽樣和系統(tǒng)抽樣三種方案,使用簡單隨機抽樣和分層抽樣時,將學生按三個班級依次統(tǒng)一編號為1,2,…,100;使用系統(tǒng)抽樣,將學生統(tǒng)一編號為1,2,…,100,并將整個編號依次分為10段.如果抽得的號碼有下列四種情況:
①7,17,27,37,47,57,67,77,87,97;②3,9,15,33,43,53,65,75,85,95;
③9,19,29,39,49,59,69,79,89,99,;④2,12,22,32,42,52,62,73,83,96.
關(guān)于上述樣本的下列結(jié)論中,正確的是( )
A. ①③都可能為分層抽樣 B. ②④都不能為分層抽樣
C. ①④都可能為系統(tǒng)抽樣 D. ②③都不能為系統(tǒng)抽樣
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列四個命題:
①如果平面外一條直線與平面內(nèi)一條直線平行,那么;
②過空間一定點有且只有一條直線與已知平面垂直;
③如果一條直線垂直于一個平面內(nèi)的無數(shù)條直線,那么這條直線與這個平面垂直;
④若兩個相交平面都垂直于第三個平面,則這兩個平面的交線垂直于第三個平面.
其中真命題的個數(shù)為
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com