如圖,在四面體ABCD中,截面PQMN是正方形,則在下列命題中,不一定成立的為
A.AC⊥BEB.AC//截面PQMN
C.異面直線PM與BD所成的角為45°D.AC=BD
D

分析:首先由正方形中的線線平行推導(dǎo)線面平行,再利用線面平行推導(dǎo)線線平行,這樣就把AC、BD平移到正方形內(nèi),即可利用平面圖形知識(shí)做出判斷.
解答:解:因?yàn)榻孛鍼QMN是正方形,所以PQ∥MN、QM∥PN,
則PQ∥平面ACD、QM∥平面BDA,
所以PQ∥AC,QM∥BD,
由PQ⊥QM可得AC⊥BD,故A正確;
由PQ∥AC可得AC∥截面PQMN,故B正確;
異面直線PM與BD所成的角等于PM與QM所成的角,故C正確;
綜上D是錯(cuò)誤的.
故選D.
點(diǎn)評(píng):本題主要考查線面平行的性質(zhì)與判定.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)

中,,,
(1)求的值;
(2)求實(shí)數(shù)的值;
(3)若AQBP交于點(diǎn)M,,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在四棱錐中,,,且DB平分,E為PC的中點(diǎn),, PD=3,(1)證明   (2)證明
(3)求四棱錐的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

    (本小題12分)
如圖3,已知在側(cè)棱垂直于底面
的三棱柱中,AC="BC," AC⊥BC,點(diǎn)D是A1B1中點(diǎn).
(1)求證:平面AC1D⊥平面A1ABB1;
(2)若AC1與平面A1ABB1所成角的正弦值
,求二面角D- AC1-A1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知四面體中,,平面平面,分別為棱的中點(diǎn)。

(1)求證:平面;
(2)求證:;
(3)若內(nèi)的點(diǎn)滿足∥平面,設(shè)點(diǎn)構(gòu)成集合,試描述點(diǎn)集的位置(不必說明理由)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,已知中,平面,
分別為上的動(dòng)點(diǎn).
(1)若,求證:平面平面
(2)若,,求平面與平面所成的銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.如圖,在正方體ABCD-A1B1C1D1中,P是側(cè)面BB1C1C內(nèi)一動(dòng)點(diǎn),若P到直線BC與直線C1D1的距離相等,則動(dòng)點(diǎn)P的軌跡所在的曲線是(   )
A.直線B.圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直角△BCD所在的平面垂直于正△ABC所在的平面,PA⊥平面ABC,,、F分別為DB、CB的中點(diǎn),

(1)證明:AE⊥BC;   
(2)求直線PF與平面BCD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

⊿ABC1與⊿ABC2均為等腰直角三角形,且腰長均為1,二面角C1-AB-C2為60o,則點(diǎn)C1與C2之間的距離可能是___________.(寫出二個(gè)可能值即可)

查看答案和解析>>

同步練習(xí)冊(cè)答案