(本小題滿分13分)

如圖,已知橢圓的焦點(diǎn)為,離心率為,過點(diǎn)的直線交橢圓、兩點(diǎn).

(1)求橢圓的方程;

(2)①求直線的斜率的取值范圍;

②在直線的斜率不斷變化過程中,探究是否總相等?若相等,請(qǐng)給出證明,若不相等,說明理由.

 

【答案】

(1)(2)(3)

【解析】

試題分析:解:(1)由已知條件知,,得,又,

所以橢圓的方程為 …………4分

(2)直線的方程為,

聯(lián)立,得 ………6分

① 由于直線與橢圓相交,所以,

解得直線的斜率的取值范圍是 ………8分

總相等.證明:設(shè),則

 …………9分

所以

 ………11分

所以 ………13分

考點(diǎn):本試題考查了橢圓的知識(shí)運(yùn)用。

點(diǎn)評(píng):對(duì)于圓錐曲線的方程的求解,一般要通過其性質(zhì)得到a,b,c的關(guān)系式,進(jìn)而化簡運(yùn)算得到結(jié)論,同時(shí)在研究直線與圓錐曲線的位置關(guān)系的時(shí)候,一般都是采用的設(shè)而不求的思想,結(jié)合韋達(dá)定理和判別式來進(jìn)行,同時(shí)得到解決。對(duì)于角的相等問題,一般利用其斜率來說明即可。屬于中檔題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數(shù).

(1)求函數(shù)的最小正周期和最大值;

(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.

(3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).

(1)求的值;(2)判斷函數(shù)的單調(diào)性;

(3)若對(duì)任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,的中點(diǎn)。

(Ⅰ)求證:∥平面;

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).

(1) 求函數(shù)的表達(dá)式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項(xiàng)和

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案