函數(shù)y=cos2x在下列哪個(gè)區(qū)間上是減函數(shù)(  )
A、[-
π
4
,
π
4
]
B、[
π
4
,
4
]
C、[0,
π
2
]
D、[
π
2
,π]
分析:將2x看做一個(gè)整體,令kπ≤x≤
π
2
+kπ(k∈Z)解出x的范圍后,對(duì)選項(xiàng)逐一驗(yàn)證即可.
解答:解:∵y=cos2x∴2kπ≤2x≤π+2kπ(k∈Z)
∴kπ≤x≤
π
2
+kπ(k∈Z)
當(dāng)k=0時(shí),0≤x≤
π
2
函數(shù)y=cos2x單調(diào)遞減
故選C.
點(diǎn)評(píng):本題主要考查余弦函數(shù)的單調(diào)問(wèn)題,一般把wx+ρ看做一個(gè)整體,確定滿足的不等式后解x的范圍.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=cos2x在點(diǎn)(
π
4
,0)
處的切線方程是( 。
A、4x+2y+π=0
B、4x-2y+π=0
C、4x-2y-π=0
D、4x+2y-π=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=cos2x在點(diǎn)(
π4
,0)
處的切線方程是
4x+2y-π=0
4x+2y-π=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=cos2x在(0,π)內(nèi)的極_____________值是_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=cos2x在下列哪個(gè)區(qū)間上是減函數(shù)(    )

A.[-,]                                 B.[,

C.[0,]                                    D.[,π]

查看答案和解析>>

同步練習(xí)冊(cè)答案