(本小題滿分13分)

設(shè)雙曲線,點(diǎn)A、B分別為雙曲線C實(shí)軸的左端點(diǎn)和虛軸的上端點(diǎn),點(diǎn)分別為雙曲線C的左、右焦點(diǎn),點(diǎn)M、N是雙曲線C的右支上不同兩點(diǎn),點(diǎn)Q為線段MN的中點(diǎn).已知在雙曲線C上存在一點(diǎn)P,使得

(Ⅰ)求雙曲線C的離心率;

(Ⅱ)設(shè)為正常數(shù),若點(diǎn)Q在直線上,求直線MN在y軸上的截距的取值范圍. 

(Ⅰ).(Ⅱ)直線MN在y軸上的截距的取值范圍是


解析:

(Ⅰ)由題設(shè),點(diǎn),,,其中.(1分)

因?yàn)?img width=188 height=27 src="http://thumb.zyjl.cn/pic1/1899/sx/199/209199.gif" >,則.

設(shè)點(diǎn)P,則,所以.       (3分)

因?yàn)辄c(diǎn)P在雙曲線上,所以,即.       (4分)

因?yàn)?img width=37 height=15 src="http://thumb.zyjl.cn/pic1/1899/sx/8/209208.gif" >,所以,即,故離心率.                    (6分)

(Ⅱ)由(Ⅰ)知,則.                                 (7分)

軸,則Q在x軸上,不合題意.

設(shè)直線MN的方程為,代入,得,即

.                            (*)            (9分)

,則MN與雙曲線C的漸近線平行,不合題意.

設(shè)點(diǎn),,,則

,.                  (10分)

若點(diǎn)Q在直線上,則.

因?yàn)辄c(diǎn)M、N在雙曲線的右支上,所以m≠0,從而k=4.                         (11分)

此時(shí),方程(*)可化為.

,得.                                (12分)

又M、N在雙曲線C 的右支上,則,所以.

故直線MN在y軸上的截距的取值范圍是.                         (13分)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數(shù).

(1)求函數(shù)的最小正周期和最大值;

(2)在給出的直角坐標(biāo)系中,畫(huà)出函數(shù)在區(qū)間上的圖象.

(3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).

(1)求的值;(2)判斷函數(shù)的單調(diào)性;

(3)若對(duì)任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長(zhǎng)都為2,的中點(diǎn)。

(Ⅰ)求證:∥平面;

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來(lái)源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).

(1) 求函數(shù)的表達(dá)式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項(xiàng)和

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案