用數(shù)學(xué)歸納法證明不等式 (n>1,n∈N*)的過程中,用n=k+1時(shí)左邊的代數(shù)式減去n=k時(shí)左邊的代數(shù)式的結(jié)果是A,求代數(shù)式A.


解:當(dāng)n=k時(shí),左邊=,n=k+1時(shí),左邊=+…+,故左邊增加的式子是,即A=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:


如圖,三棱柱ABCA1B1C1的側(cè)棱AA1⊥底面ABC,∠ACB=90°,E是棱CC1的中點(diǎn),FAB的中點(diǎn),ACBC=1,AA1=2.

(1)求證:CF∥平面AB1E;

(2)求三棱錐CAB1E在底面AB1E上的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知函數(shù)f(x)=sin-2cos2,x∈R(其中ω>0).

(1)求函數(shù)f(x)的值域;

(2)若函數(shù)yf(x)的圖象與直線y=-1的兩個(gè)相鄰交點(diǎn)間的距離為,求函數(shù)yf(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


x2y2+2x+4y-15=0上到直線x-2y=0的距離為的點(diǎn)的個(gè)數(shù)是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知橢圓C=1(ab>0)的離心率為,其左、右焦點(diǎn)分別是F1、F2,過點(diǎn)F1的直線l交橢圓CE、G兩點(diǎn),且△EGF2的周長為4.

(1)求橢圓C的方程;

(2)若過點(diǎn)M(2,0)的直線與橢圓C相交于兩點(diǎn)A、B,設(shè)P為橢圓上一點(diǎn),且滿足 (O為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知a≥b>0,求證:2a3-b3≥2ab2-a2b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知函數(shù)f(x)和g(x)的圖象關(guān)于原點(diǎn)對(duì)稱,且f(x)=x2+2x.

(1)解關(guān)于x的不等式g(x)≥f(x)-|x-1|;

(2)如果對(duì)∀x∈R,不等式g(x)+cf(x)-|x-1|恒成立,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


若直線的參數(shù)方程為 (t為參數(shù)),求直線的斜率.

查看答案和解析>>

同步練習(xí)冊(cè)答案