f(x)=
logax,x≥1
(3-a)x-a,x<1
在R上單調(diào)遞增,則a的取值范圍是
 
考點(diǎn):分段函數(shù)的應(yīng)用,函數(shù)與方程的綜合運(yùn)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知中函數(shù)是在R上是單調(diào)遞增函數(shù),根據(jù)指數(shù)函數(shù)與y=(a-2)x-3與參數(shù)的關(guān)系,可得一次函數(shù)的一次項(xiàng)系數(shù)大于0,且對(duì)數(shù)函數(shù)的底數(shù)大于0不等于1,且在x=1時(shí),第一個(gè)解析式對(duì)應(yīng)的函數(shù)值不大于第二個(gè)函數(shù)解析式對(duì)應(yīng)的函數(shù)值.
解答: 解:因?yàn)閒(x)=
logax,x≥1
(3-a)x-a,x<1
在R上單調(diào)遞增,3-a>0,可得a<3.
所以(3-a)×1-a≤loga1.解得a≥
3
2

又a是對(duì)數(shù)的底數(shù),所以1<a.
綜上a∈[
3
2
,3).
故答案為:[
3
2
,3).
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)單調(diào)性的性質(zhì),其中根據(jù)對(duì)數(shù)函數(shù)和一次函數(shù)的單調(diào)性,及分段函數(shù)單調(diào)性的性質(zhì),構(gòu)造關(guān)于a的不等式組是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=
1
1+
1
x
的定義域?yàn)镸,那么( 。
A、M={x|x≠0}
B、{x|x<0且x≠-1}
C、M={x|x≠-1}
D、{x|x≠0且x≠-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,輸出的結(jié)果為( 。
A、8B、5C、3D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一個(gè)邊長(zhǎng)為6cm的正方形卷成一個(gè)底面為正三角形的三棱柱,求此三棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,已知c=2,C=
π
3

(1)若△ABC的面積等于
3
,求a,b;
(2)若sinC+sin(B-A)=2sin2A,且b<a,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩個(gè)圓錐有公共底面,且兩圓錐的頂點(diǎn)和底面的圓周都在同一個(gè)球面上.這兩個(gè)圓錐中,體積較小者的高與體積較大者的高的比值為
1
3
,則體積較小的圓錐與球的體積之比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


如圖所示,用自然語言表述用斜二測(cè)畫法畫出水平放置的正三角形的直觀圖的算法過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2x-y)3(x+3y)2的展開式中x2y3的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡(jiǎn):(
a-1
2+
(1-a)2
+
3(1-a)3

查看答案和解析>>

同步練習(xí)冊(cè)答案