【題目】已知,均為奇函數(shù),上的最大值為,則在的最小值為__________.

【答案】-1

【解析】

根據(jù)定義得出f(﹣x+fx)=0g(﹣x+gx)=0,即Fx+F(﹣x)=4,根據(jù)Fx)圖象關(guān)于(0,2)對稱,求解得出Fx)在(﹣,0)上的最小值F(﹣x0)=45=﹣1

fx)和gx)都是定義域在R上的奇函數(shù),若Fx)=afx+bgx+2,

Fx)﹣2afx+bgx)為奇函數(shù),

f(﹣x+fx)=0g(﹣x+gx)=0,

Fx+F(﹣x)=4,

Fx)圖象關(guān)于(0,2)對稱,

∵在(0+∞)上有最大值為5,

∴最大值為Fx0)=5,

Fx)在(﹣,0)上的最小值F(﹣x0)=45=﹣1

Fx)在(﹣,0)上的最小值為﹣1,

故答案為:﹣1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組進(jìn)行“野島生存”實(shí)踐活動,他們設(shè)置了個取水敞口箱.其中個采用種取水法,個采用種取水法.如圖甲為種方法一個夜晚操作一次個水箱積取淡水量頻率分布直方圖,圖乙為種方法一個夜晚操作一次個水箱積取淡水量頻率分布直方圖.

(1)設(shè)兩種取水方法互不影響,設(shè)表示事件“法取水箱水量不低于,法取水箱水量不低于”,以樣本估計(jì)總體,以頻率分布直方圖中的頻率為概率,估計(jì)的概率;

(2)填寫下面列聯(lián)表,并判斷是否有的把握認(rèn)為箱積水量與取水方法有關(guān).

箱積水量

箱積水量

箱數(shù)總計(jì)

箱數(shù)總計(jì)

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,下列說法錯誤的是( )

A. 有最大值,則也有最大值

B. 有最大值,則也有最大值

C. 若數(shù)列不單調(diào),則數(shù)列也不單調(diào)

D. 若數(shù)列不單調(diào),則數(shù)列也不單調(diào)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了讓學(xué)生了解環(huán)保知識,增強(qiáng)環(huán)保意識,某中學(xué)舉行了一次環(huán)保知識競賽,共有900名學(xué)生參加了這次競賽. 為了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分均為整數(shù),滿分為100)進(jìn)行統(tǒng)計(jì). 請你根據(jù)尚未完成并有局部污損的頻率分布表和頻數(shù)分布直方圖,解答下列問題:

1)填充頻率分布表的空格(將答案直接填在表格內(nèi));

2)補(bǔ)全頻數(shù)分布直方圖;

3)若成績在75.585.5分的學(xué)生為二等獎,問獲得二等獎的學(xué)生約為多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)一段圖象如圖所示。

(1)求出函數(shù)的解析式;

(2) 函數(shù)的圖像可由函數(shù)y=sinx的圖像經(jīng)過怎樣的平移和伸縮變換而得到?

(3) 求出的單調(diào)遞增區(qū)間;

(4) 指出當(dāng)取得最小值時(shí)的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .若gx)存在2個零點(diǎn),則a的取值范圍是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某租賃公司擁有汽車100.當(dāng)每輛車的月租金為3000元時(shí),可全部租出.當(dāng)每輛車的月租金每增加元時(shí),未租出的車將會增加一輛.租出的車每輛每月需要維護(hù)費(fèi)元,未租出的車每輛每月需要維護(hù)費(fèi).

1)當(dāng)每輛車的月租金定為元時(shí),能租出多少輛車?

2)當(dāng)每輛車的月租金定為多少元時(shí),租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)是定義域?yàn)?/span>的偶函數(shù),當(dāng)時(shí),,若關(guān)于的方程,,有且僅有5個不同實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某幾何體的三視圖如圖所示,則該幾何體的體積是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案