已知數(shù)列{an}為等差數(shù)列,若am=a,an=b(n-m≥1,m,n∈N*),則am+n=
nb-ma
n-m
.類比上述結(jié)論,對于等比數(shù)列{bn}(bn>0,n∈N*),若bm=c,bn=d(n-m≥2,m,n∈N*),則可以得到bm+n=(  )
分析:首先根據(jù)等差數(shù)列和等比數(shù)列的性質(zhì)進行類比,整體上等差結(jié)果的分式形式,類比出等比中的根式形式.等差數(shù)列中的分子nb-ma可以類比出等比數(shù)列中被開方數(shù)的
dn
cm
,分母n-m類比出根指數(shù)為n-m,得到答案.
解答:解:等差數(shù)列中的nb和ma可以類比等比數(shù)列中的dn和cm,
等差數(shù)列中的子nq-mp可以類比等比數(shù)列中的
dn
cm

等差結(jié)果的分式形式,類比出等比中的根式形式,
故bm+n=
n-m
dn
cm

故選C
點評:本題主要考查類比推理的知識點,解答本題的關(guān)鍵是熟練掌握等差數(shù)列和等比數(shù)列的性質(zhì),根據(jù)等差數(shù)列的所得到的結(jié)論,推導(dǎo)出等比數(shù)列的結(jié)論,本題比較簡單.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義:在數(shù)列{an}中,an>0且an≠1,若
a
an+1
n
為定值,則稱數(shù)列{an}為“等冪數(shù)列”.已知數(shù)列{an}為“等冪數(shù)列”,且a1=2,a2=4,Sn為數(shù)列{an}的前n項和,則S2009=( 。
A、6026B、6024
C、2D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:在數(shù)列{an}中,an>0且an≠1,若anan+1為定值,則稱數(shù)列{an}為“等冪數(shù)列”.已知數(shù)列{an}為“等冪數(shù)列”,且a1=2,a2=4,Sn為數(shù)列{an}的前n項和,則S2013等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:在數(shù)列{an}中,an>0,且an≠1,若anan+1為定值,則稱數(shù)列{an}為“等冪數(shù)列”.已知數(shù)列{an}為“等冪數(shù)列”,且a1=2,a2=4,Sn為數(shù)列{an}的前n項和,則S2011等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出“等和數(shù)列”的定義:從第二項開始,每一項與前一項的和都等于一個常數(shù),這樣的數(shù)列叫做“等和數(shù)列”,這個常數(shù)叫做“公和”.已知數(shù)列{an}為等和數(shù)列,公和為
1
2
,且a2=1,則a2009=(  )
A、-
1
2
B、
1
2
C、1
D、2008

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012--2013學(xué)年河南省高二上學(xué)期第一次考試數(shù)學(xué)試卷(解析版) 題型:選擇題

.定義:在數(shù)列{an}中,an>0且an≠1,若為定值,則稱數(shù)列{an}為“等冪數(shù)列”.已知數(shù)列{an}為“等冪數(shù)列”,且a1=2,a2=4,Sn為數(shù)列{an}的前n項和,則S2009= (   )A.6026           B .6024               C.2                     D.4

 

查看答案和解析>>

同步練習(xí)冊答案