橢圓
x2
25
+
y2
9
=1
上的一點P到左準線的距離為
5
2
,則P到右焦點的距離是( 。
分析:先確定橢圓的離心率,利用橢圓的第二定義,可求P到左焦點的距離,再利用橢圓的第一定義,可求P到右焦點的距離.
解答:解:橢圓
x2
25
+
y2
9
=1
中,a=5,b=3,
c=
a2-b2
=4

e=
c
a
=
4
5

設P到左焦點的距離為d,則
∵橢圓
x2
25
+
y2
9
=1
上的一點P到左準線的距離為
5
2
,
∴由橢圓的第二定義得
d
5
2
=
4
5

∴d=2
根據(jù)橢圓的第一定義知,P到右焦點的距離是2a-d=8
故選D.
點評:本題以橢圓的標準方程為載體,考查橢圓的性質,考查橢圓定義的運用,解題時正確理解橢圓的兩個定義是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知△ABC頂點A(-4,0)和C(4,0),頂點B在橢圓
x2
25
+
y2
9
=1
上,則
sinA+sinC
sinB
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設P是橢圓
x2
25
+
y2
9
=1
上一點,M、N分別是兩圓:(x+4)2+y2=1和(x-4)2+y2=1上的點,則|PM|+|PN|的最小值與最大值的積為
96
96

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓
x2
25
+
y2
9
=1
的焦點F1,F(xiàn)2,AB是橢圓過焦點F1的弦,則△ABF2的周長是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F1、F2,分別是橢圓
x2
25
-
y2
9
=1
的左、右焦點,點P在橢圓上,若|PF1|=9|PF2|,則P點的坐標為
(5,0)
(5,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有下列五個命題:
①“若x+y=0,則x,y互為相反數(shù)”的逆命題.
②在平面內,F(xiàn)1、F2是定點,丨F1F2丨=6,動點M滿足丨MF1丨-丨MF2丨=4,則點M的軌跡是雙曲線.
③“在△ABC中,“∠B=60°”是“∠A,∠B,∠C三個角成等差數(shù)列”的充要條件.
④“若-3<m<5,則方程
x2
5-m
+
y2
m+3
=1是橢圓”.
⑤已知向量
a
,
b
,
c
是空間的一個基底,則向量
a
+
b
,
a
-
b
c
也是空間的一個基底.
⑥橢圓
x2
25
+
y2
9
=1上一點P到一個焦點的距離為5,則P到另一個焦點的距離為5.
其中真命題的序號是
①③⑤⑥
①③⑤⑥

查看答案和解析>>

同步練習冊答案