在等比數(shù)列{an}中,a2a3=32,a5=32.
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{an}的前n項和為Sn,求S1+2S2+…+nSn.
(1) an=2n     (2) (n-1)2n+2+4-n(n+1)

解:(1)設等比數(shù)列{an}的首項為a1,公比為q,依題意得

解得a1=2,q=2,
∴an=2·2n-1=2n.
(2)∵Sn表示數(shù)列{an}的前n項和,
∴Sn==2(2n-1),
∴S1+2S2+…+nSn=2[(2+2·22+…+n·2n)-(1+2+…+n)]=2(2+2·22+…+n·2n)-n(n+1),
設Tn=2+2·22+…+n·2n
則2Tn=22+2·23+…+n·2n+1
①-②,得-Tn=2+22+…+2n-n·2n+1
=-n·2n+1
=(1-n)2n+1-2,
∴Tn=(n-1)2n+1+2,
∴S1+2S2+…+nSn=2[(n-1)2n+1+2]-n(n+1)
=(n-1)2n+2+4-n(n+1).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列的前項和為滿足.
(1)求數(shù)列的通項公式;
(2)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

等比數(shù)列{an}中,a1>0,a2a4+2a3a5+a4a6=36,則a3+a5=________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知數(shù)列{an}的前n項和為Sn,a1=1,Sn=2an+1,則Sn等于(  )
A.2n-1B.n-1C.n-1D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知{an}是首項為1的等比數(shù)列,Sn是{an}的前n項和,且9S3=S6,則數(shù)列的前5項和為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知各項均為正數(shù)的等比數(shù)列{an}中,a1a2a3=5,a7a8a9=10,則a4a5a6等于(  )
A.5B.7C.6D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知數(shù)列{an}滿足3an+1an=0,a2=-,則{an}的前10項和等于(  )
A.-6(1-3-10)B.(1-310)
C.3(1-3-10)D.3(1+3-10)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在各項都為正數(shù)的等比數(shù)列{an}中,a1=2,a6=a1a2a3,則公比q的值為(  )
A.B.C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

求下面數(shù)列的前n項和:
1,3,5,7,…

查看答案和解析>>

同步練習冊答案