【題目】函數(shù)f(x)= 的定義域?yàn)椋?/span>
A.(﹣1,1]
B.(﹣1,0)∪(0,1]
C.(﹣1,1)
D.(﹣1,0)∪(0,1)

【答案】B
【解析】解:要使原函數(shù)有意義,則 ,解得:﹣1<x≤1,且x≠0.
∴函數(shù)f(x)= 的定義域?yàn)椋ī?,0)∪(0,1].
故選:B.
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)的定義域及其求法,需要了解求函數(shù)的定義域時(shí),一般遵循以下原則:①是整式時(shí),定義域是全體實(shí)數(shù);②是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù);③是偶次根式時(shí),定義域是使被開(kāi)方式為非負(fù)值時(shí)的實(shí)數(shù)的集合;④對(duì)數(shù)函數(shù)的真數(shù)大于零,當(dāng)對(duì)數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=ax2+2(a﹣3)x+1在區(qū)間[﹣2,+∞)上遞減,則實(shí)數(shù)a的取值范圍是(
A.(﹣∞,﹣3]
B.[﹣3,0]
C.[﹣3,0)
D.[﹣2,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次水下考古活動(dòng)中,某一潛水員需潛水50米到水底進(jìn)行考古作業(yè),其用氧量包含以下三個(gè)方面:

①下潛平均速度為米/分鐘,每分鐘的用氧量為升;

②水底作業(yè)時(shí)間范圍是最少10分鐘最多20分鐘,每分鐘用氧量為0.3升;

③返回水面時(shí),平均速度為米/分鐘,每分鐘用氧量為0.32升;潛水員在此次考古活動(dòng)中的總用氧量為升.

(1)如果水底作業(yè)時(shí)間是10分鐘,將表示為的函數(shù);

(2)若,水底作業(yè)時(shí)間為20分鐘,求總用氧量的取值范圍;

(3)若潛水員攜帶氧氣13.5升,請(qǐng)問(wèn)潛水員最多在水下多少分鐘(結(jié)果取整數(shù))?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 ,橢圓的長(zhǎng)軸為短軸,且與有相同的離心率.

(1)求橢圓的方程;

(2)設(shè)為坐標(biāo)原點(diǎn),點(diǎn)分別在橢圓上, ,求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,2,在Rt△ABC中,AB=BC=4,點(diǎn)E在線(xiàn)段AB上,過(guò)點(diǎn)E作交AC于點(diǎn)F,將△AEF沿EF折起到△PEF的位置(點(diǎn)A與P重合),使得∠PEB=60°.

(1)求證:EF⊥PB;
(2)試問(wèn):當(dāng)點(diǎn)E在何處時(shí),四棱錐P﹣EFCB的側(cè)面的面積最大?并求此時(shí)四棱錐P﹣EFCB的體積及直線(xiàn)PC與平面EFCB所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合M={f(x)|f2(x)﹣f2(y)=f(x+y)f(x﹣y),x,y∈R},有下列命題
①若f(x)= ,則f(x)∈M;
②若f(x)=2x,則f(x)∈M;
③f(x)∈M,則y=f(x)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng);
④f(x)∈M,則對(duì)于任意實(shí)數(shù)x1 , x2(x1≠x2),總有 <0成立;
其中所有正確命題的序號(hào)是 . (寫(xiě)出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓M: =1(a>b>0)的離心率為 ,直線(xiàn)x=±a和y=±b所圍成的矩形ABCD的面積為8.
(Ⅰ)求橢圓M的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線(xiàn)l:y=x+m(m∈R)與橢圓M有兩個(gè)不同的交點(diǎn)P,Q,l與矩形ABCD有兩個(gè)不同的交點(diǎn)S,T.求 的最大值及取得最大值時(shí)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 是定義在(﹣∞,+∞)上的奇函數(shù),且滿(mǎn)足
(1)求實(shí)數(shù)a,b,并確定函數(shù)f(x)的解析式
(2)用定義證明f(x)在(﹣1,1)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C (b>0)的離心率為A(,0), B(0,b)O(0,0),OAB的面積為1.

(1)求橢圓C的方程;

(2)設(shè)P是橢圓C上一點(diǎn),直線(xiàn)PAy軸交于點(diǎn)M,直線(xiàn)PBx軸交于點(diǎn)N.求證:|AN|·|BM|為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案