直線截圓得到的弦長為    

試題分析:因為根據(jù)圓的方程可知,圓的半徑為2,圓心(0,0)到直線的距離為d=,
則利用勾股定理,半弦長和點到直線的距離,和半徑的關(guān)系得到,∴弦長為 2=2,故答案為。
點評:解決該試題的關(guān)鍵是先求出圓心和半徑,求出圓心(0,0)到直線的距離為d,利用弦長公式求出弦長
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
己知圓 直線.
(1) 求與圓相切, 且與直線平行的直線的方程;
(2) 若直線與圓有公共點,且與直線垂直,求直線軸上的截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分13分)已知與兩平行直線都相切,且圓心在直線上,
(Ⅰ)求的方程;
(Ⅱ)斜率為2的直線相交于兩點,為坐標原點且滿足,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)一束光通過M(25,18)射入被x軸反射到圓C:x2+(y-7)2=25上.
(1)求通過圓心的反射光線所在的直線方程;
(2)求在x軸上反射點A的活動范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

,則直線被圓所截得的弦長為(  )
A.  B.1C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

關(guān)于直線的對稱圓方程是              

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線繞原點按順時針方向旋轉(zhuǎn)所得直線與圓的位置關(guān)系是(  ).
A.直線與圓相切B.直線與圓相交但不過圓心
C.直線與圓相離D.直線過圓心

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

曲線與直線有兩個不同的交點,實數(shù)的范圍是()
A.(,+∞)B.(C.(0,)D.(,

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在平面直角坐標系中,圓的方程為,若直線上至少存在一點,使得以該點為圓心,1為半徑的圓與圓有公共點,則的最大值是     ;

查看答案和解析>>

同步練習冊答案