等腰三角形ABC底邊兩端點是A(-
3
,0),B(
3
,0),頂點C的軌跡是( 。
A、一條直線B、一條直線去掉一點
C、一個點D、兩個點
考點:軌跡方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)BC=AC,可得頂點D的軌跡是AB的垂直平分線(除去交點),即可得出結(jié)論.
解答: 解:∵BC=AC,
∴頂點C的軌跡是AB的垂直平分線(除去交點),
即:一條直線去掉一點.
故選:B.
點評:本題考查軌跡方程,考查學生的計算能力,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設拋物線y2=4x的焦點為F,過F作一條直線與拋物線相交于A、B兩點.
(1)求證:以線段AB為直徑的圓與拋物線的準線相切;
(2)設A、B兩點縱坐標為y1,y2,求y1y2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱柱的底面是菱形,各側(cè)面都是長方形,兩個對角面也是長方形,面積分別為Q1,Q.求四棱柱的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在半徑為5的圓中,圓心角為周長的
2
3
的角所對圓弧的長是( 。
A、
3
B、
20π
3
C、
10π
3
D、
50π
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=1+4cosx-4sin2x(-
3
≤x≤
3
)的值域是( 。
A、[0,8]
B、[-3,5]
C、[-3,2
2
-1]
D、[-4,5]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在約束條件
x≤1
x-y+m2≥0
x+y-1≥0
下,若目標函數(shù)z=-2x+y的最大值不超過4,則實數(shù)m的取值范圍( 。
A、(-
3
,
3
B、[0,
3
]
C、[-
3
,0]
D、[-
3
3
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的中心在坐標原點,焦點在x軸上,離心率為
3
2
,且過點(1,2
3
),求橢圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關于幾何體有以下命題
①有兩個面平行,其余各面都是平行四邊形的幾何體叫棱柱;
②有一個面是多邊形,其余各面都是三角形的幾何體叫棱錐;
③棱臺是由平行于底面的平面截棱錐所得到的平面與底面之間的部分;
④兩個底面平行且相似,其余各面都是梯形的多面體是棱臺;
⑤一個直角三角形繞其一邊旋轉(zhuǎn)一周所形成的封閉圖形叫圓錐.
其中正確的有
 
.(請把正確命題的題號寫上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知圓C的圓心是x-y+1=0與x軸的交點,且與直線x+y+3=0相切,求圓C的標準方程;
(2)若點P(x,y)在圓(x-2)2+(y+1)2=36上,求u=x+y的取值范圍.

查看答案和解析>>

同步練習冊答案