分析 根據(jù)$\overrightarrow m⊥\overrightarrow n$,利用向量的性質建立關系與余弦定理結合可得A的大。産和c的等差中項為$\frac{1}{2}$,根據(jù)等差中項性質,可得b+c=1.△ABC面積S=$\frac{1}{2}$bcsinA,利用基本不等式可得最大值.
解答 解:向量$\overrightarrow m=(b-c,c-a)$,$\overrightarrow n=(b,c+a)$,
∵$\overrightarrow m⊥\overrightarrow n$,
∴b(b-c)+(c-a)(c+a)=0.
得:b2-bc=-c2+a2.即-a2+b2+c2=bc
由余弦定理:b2+c2-a2=2bccosA
可是:bc=2bccosA.
∴cosA=$\frac{1}{2}$.
∵0<A<π
∴A=$\frac{π}{3}$
又b和c的等差中項為$\frac{1}{2}$,根據(jù)等差中項性質,
可得b+c=1.
∴b+c$≥2\sqrt{bc}$,(當且僅當b=c時取等號)
可得:bc≤$\frac{1}{4}$.
則△ABC面積S=$\frac{1}{2}$bcsinA≤$\frac{1}{2}×\frac{1}{4}×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{16}$.
故答案為:$\frac{\sqrt{3}}{16}$.
點評 本題考查了向量垂直的運算,余弦定理的運算,等差中項性質以及不等式的運用.屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
t(時) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y(米) | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 141 | B. | 142 | C. | 149 | D. | 150 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com