精英家教網 > 高中數學 > 題目詳情

【題目】如圖,四邊形為平行四邊形,且,點EF為平面外兩點,,

1)證明:;

2)若,求異面直線所成角的余弦值.

【答案】1)詳見解析;(2

【解析】

1)證明平面,再利用線面垂直的定義,即可得到線線垂直;

2)證明直線,兩兩互相垂直,分別以,xy,z軸建立空間直角坐標系,求得,再利用向量的夾角公式計算,即可得到答案;

解:(1)設相交于點G,連接

由題意可得四邊形為菱形,所以,

中,,,

所以,所以,所以,因為,所以平面

因為平面,所以

2)如圖,在平面內,過G的垂線,交點,由(1)可知,平面平面,

所以平面,故直線,兩兩互相垂直,

分別以,,x,y,z軸建立空間直角坐標系,

因為

,

所以,

異面直線所成角的余弦值為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,已知橢圓過點,離心率為,分別是橢圓的左、右頂點,過右焦點且斜率為的直線與橢圓相交于兩點.

1)求橢圓的標準方程;

2)記、的面積分別為、,若,求的值;

3)記直線、的斜率分別為、,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率e滿足,以坐標原點為圓心,橢圓C的長軸長為半徑的圓與直線相切.

1)求橢圓C的方程;

2)過點P(0,1)的動直線(直線的斜率存在)與橢圓C相交于AB兩點,問在y軸上是否存在與點P不同的定點Q,使得恒成立?若存在,求出定點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數的圖象如圖所示,給出四個函數:①,②,③,④,又給出四個函數的圖象,則正確的匹配方案是( ).

A.①-甲,②-乙,③-丙,④-丁B.②-甲,①-乙,③-丙,④-丙

C.①-甲,③-乙,④-丙,②-丁D.①-甲,④-乙,③-丙,②-丁

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】1,在中,,,E中點.為折痕將折起,使點C到達點D的位置,且為直二面角,F是線段上靠近A的三等分點,連結,,,如圖2.

1)證明:;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學高三年級在返校復學后,為了做好疫情防護工作,一位防疫督察員要將2盒完全相同的口罩和3盒完全相同的普通醫(yī)用口罩全部分配給3個不同的班,每個班至少分得一盒,則不同的分法種數是(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在多面體中,平面平面,,,,,

1)求平面與平面所成二面角的正弦值;

2)若是棱的中點,求證:對于棱上任意一點,都不平行.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|lnx|,g(x)=,則方程|f(x)+g(x)|=1實根的個數為________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,曲線C的參數方程為為參數),直線,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.

1)求直線l和曲線C的極坐標方程;

2)若直線與直線l相交于點A,與曲線C相交于不同的兩點M,N.的最小值.

查看答案和解析>>

同步練習冊答案