【題目】已知函數(shù)的兩條相鄰對稱軸之間的距離為

1)求的值;

2)將函數(shù)的圖象向左平移個單位,再將所得函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,得到函數(shù)的圖象,若函數(shù)在區(qū)間上存在零點(diǎn),求實(shí)數(shù)的取值范圍.

【答案】1;(2

【解析】

1)利用倍角公式、輔助角公式將化為,由兩條相鄰對稱軸之間的距離為可得周期為,再利用周期的計(jì)算公式計(jì)算即可;

2)由函數(shù)的平移、伸縮變換可得,函數(shù)在區(qū)間上存在零點(diǎn),則上有解,即的取值范圍即為上的值域.

1,

因?yàn)閮蓷l相鄰對稱軸之間的距離為,所以,

,所以.

2)由(1)可得,將函數(shù)的圖象向左平移個單位,得到函數(shù)

,再將所得函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍,

縱坐標(biāo)不變,得到函數(shù),因?yàn)?/span>,所以,

因?yàn)楹瘮?shù)在區(qū)間上存在零點(diǎn),所以

故實(shí)數(shù)的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù)的圖像在處的切線方程為:

(1)求的值;

(2)若,成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知時,函數(shù)有極值

(1)求實(shí)數(shù)的值;

(2)若方程有3個實(shí)數(shù)根,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是函數(shù)的切線,則的最小值為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是函數(shù)的部分圖象.

1)求函數(shù)的表達(dá)式;

2)把函數(shù)的圖象的周期擴(kuò)大為原來的兩倍,然后向右平移個單位,再把縱坐標(biāo)伸長為原來的兩倍,最后向上平移一個單位得到函數(shù)的圖象.若對任意的,方程在區(qū)間上至多有一個解,求正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為偶函數(shù),且函數(shù)的圖象的兩相鄰對稱軸間的距離為.

1)求的值;

2)將函數(shù)的圖象向右平移個單位長度后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的4倍,縱坐標(biāo)不變,得到函數(shù)的圖象,求函數(shù)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC的內(nèi)角AB,C的對邊分別為ab,c,且滿足

(1)求A;

(2)若D為邊BC上一點(diǎn),且,b=6,AD=2,求a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),在圓E上,過點(diǎn)的直線l與圓E相切.

求圓E的方程;

求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,離心率,點(diǎn)在橢圓上.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)點(diǎn)是橢圓上一點(diǎn),左頂點(diǎn)為,上頂點(diǎn)為,直線軸交于點(diǎn),直線軸交于點(diǎn),求證: 為定值.

查看答案和解析>>

同步練習(xí)冊答案