已知點(diǎn),直線,動(dòng)點(diǎn)P到點(diǎn)F的距離與到直線的距離相等.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)直線與曲線C交于A,B兩點(diǎn),若曲線C上存在點(diǎn)D使得四邊形FABD為平行四邊形,求b的值.
(1);(2)或。
解析試題分析:(1)顯然動(dòng)點(diǎn)的軌跡滿足拋物線的定義,故用定義去求軌跡方程;(2)法一:由題意知,故設(shè)直線FD的方程為,與拋物線方程聯(lián)立可得點(diǎn)的橫坐標(biāo),再由拋物線的定義求出,把直線的方程與拋物線方程聯(lián)立,再由弦長(zhǎng)公式求出的長(zhǎng),是用來(lái)表示的,然后令,可得關(guān)于的方程,從而求出的值;法二:同法一一樣先求出點(diǎn)的坐標(biāo),再把直線的方程與拋物線方程聯(lián)立,利用韋達(dá)定理求出兩點(diǎn)的橫坐標(biāo)和與積, 又因?yàn)樗倪呅蜦ABD是平行四邊形,所以,由此可得兩點(diǎn)的橫坐標(biāo)的關(guān)系,結(jié)合韋達(dá)定理得到的結(jié)論找到一個(gè)關(guān)于的方程,
解方程即可,需根據(jù)點(diǎn)的坐標(biāo)進(jìn)行分情況討論。
試題解析:(1)依題意,動(dòng)點(diǎn)P的軌跡C是以為焦點(diǎn),為準(zhǔn)線的拋物線,
所以動(dòng)點(diǎn)P的軌跡C的方程為
(2)解法一:因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1a/4/135j04.png" style="vertical-align:middle;" />,故直線FD的方程為,
聯(lián)立方程組消元得:,
解得點(diǎn)的橫坐標(biāo)為或 , 由拋物線定義知或
又由 消元得:。
設(shè),,則且,
所以
因?yàn)镕ABD為平行四邊形,所以 所以或,
解得或,代入成立。
(2)解法二:因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1a/4/135j04.png" style="vertical-align:middle;" />,故直線FD的方程為
聯(lián)立方程組消元得:,解得或
故點(diǎn)或.
1)當(dāng)時(shí),設(shè),
聯(lián)立方程組消元得(*)
根據(jù)韋達(dá)定理有①, ②
又因?yàn)樗倪呅问瞧叫兴倪呅,所?img src="http://thumb.zyjl.cn/pic5/tikupic/3b/b/bpoxk1.png" style="vertical-align:middle;" />,將坐標(biāo)代入有 ③
代入①有,,再代入②有
整理得此時(shí)(*)的判別式,符合題意.
2)當(dāng)時(shí),同理可解得。
考點(diǎn):(1)拋物線的定義;(2)直線與拋物線的位置關(guān)系;(3)弦長(zhǎng)公式的應(yīng)用;(4)向量加法的平行四邊形法則;(5)韋達(dá)定理的應(yīng)用。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知曲線C上任意一點(diǎn)P到兩定點(diǎn)F1(-1,0)與F2(1,0)的距離之和為4.
(1)求曲線C的方程;
(2)設(shè)曲線C與x軸負(fù)半軸交點(diǎn)為A,過(guò)點(diǎn)M(-4,0)作斜率為k的直線l交曲線C于B、C兩點(diǎn)(B在M、C之間),N為BC中點(diǎn).
(ⅰ)證明:k·kON為定值;
(ⅱ)是否存在實(shí)數(shù)k,使得F1N⊥AC?如果存在,求直線l的方程,如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的左、右頂點(diǎn)分別是、,左、右焦點(diǎn)分別是、.若,,成等比數(shù)列,求此橢圓的離心率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知曲線E上任意一點(diǎn)P到兩個(gè)定點(diǎn)F1(-,0)和F2(,0)的距離之和為4.
(1)求曲線E的方程;
(2)設(shè)過(guò)點(diǎn)(0,-2)的直線l與曲線E交于C、D兩點(diǎn),且·=0(O為坐標(biāo)原點(diǎn)),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓C:(x-4)2+(y-m)2=16(m∈N*),直線4x-3y-16=0過(guò)橢圓E:+=1(a>b>0)的右焦點(diǎn),且被圓C所截得的弦長(zhǎng)為,點(diǎn)A(3,1)在橢圓E上.
(1)求m的值及橢圓E的方程;
(2)設(shè)Q為橢圓E上的一個(gè)動(dòng)點(diǎn),求·的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓E:+=1(a>b>0)的上焦點(diǎn)是F1,過(guò)點(diǎn)P(3,4)和F1作直線PF1交橢圓于A,B兩點(diǎn),已知A(,).
(1)求橢圓E的方程;
(2)設(shè)點(diǎn)C是橢圓E上到直線PF1距離最遠(yuǎn)的點(diǎn),求C點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知F1,F(xiàn)2是橢圓C:+=1(a>b>0)的左、右焦點(diǎn),點(diǎn)P(-,1)在橢圓上,線段PF2與y軸的交點(diǎn)M滿足+=0.
(1)求橢圓C的方程;
(2)橢圓C上任一動(dòng)點(diǎn)N(x0,y0)關(guān)于直線y=2x的對(duì)稱點(diǎn)為N1(x1,y1),求3x1-4y1的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線C:的焦點(diǎn)為F,直線與y軸的交點(diǎn)為P,與C的交點(diǎn)為Q,且.
(1)求C的方程;
(2)過(guò)F的直線與C相交于A,B兩點(diǎn),若AB的垂直平分線與C相較于M,N兩點(diǎn),且A,M,B,N四點(diǎn)在同一圓上,求的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
拋物線上有兩點(diǎn)A、B,且|AB|=6.則線段AB的中點(diǎn)M到y(tǒng)軸的最小距離為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com