解不等式:(kx-1)(x+2)<0.
考點(diǎn):一元二次不等式的解法
專題:不等式的解法及應(yīng)用
分析:對(duì)k分類討論,利用一元二次不等式的解法即可得出.
解答: 解:k=0時(shí),不等式化為x+2>0,∴不等式的解集為{x|x>-2};
當(dāng)k>0時(shí),(kx-1)(x+2)<0化為(x-
1
k
)(x+2)<0
,解得-2<x<
1
k
,解集為{x|-2<x<
1
k
}.
當(dāng)k<0時(shí),不等式化為(x-
1
k
)(x+2)
>0,
當(dāng)-
1
2
<k<0時(shí),
1
k
<-2,∴不等式的解集為:{x|x<
1
k
或x>-2};
當(dāng)k=-
1
2
時(shí),
1
k
=-2,不等式的化為(x+2)2>0,不等式解集為:{x|x≠-2};
當(dāng)k<-
1
2
時(shí),
1
k
>-2,∴不等式的解集為:{x|x>
1
k
或x<-2}.
綜上可得:k=0時(shí),不等式的解集為{x|x>-2};
當(dāng)k>0時(shí),不等式解集為{x|-2<x<
1
k
};
當(dāng)-
1
2
<k<0時(shí),不等式的解集為{x|x<
1
k
或x>-2};
當(dāng)k=-
1
2
時(shí),不等式解集為{x|x≠-2};
當(dāng)k<-
1
2
時(shí),不等式的解集為{x|x>
1
k
或x<-2}.
點(diǎn)評(píng):本題考查了一元二次不等式的解法,考查了分類討論的思想方法,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)圓錐曲線C的兩個(gè)焦點(diǎn)分別為F1、F2,若曲線C上存在點(diǎn)P滿足|PF1|:|F1F2|:|PF2|=4:3:2,則曲線C的離心率等于( 。
A、
2
3
3
2
B、
2
3
或2
C、
1
2
或2
D、
1
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若集合A={x|-2≤x≤3},B={x|x>a},求A∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O為坐標(biāo)原點(diǎn),向量
OA
=(sinα,1),
OB
=(cosα,0),
OC
=(-sinα,2),點(diǎn)P是直線AB上的一點(diǎn),且
AB
=
BP

(Ⅰ)若O,P,C三點(diǎn)共線,求以線段OA,OB為鄰邊的平行四邊形的對(duì)角線長(zhǎng);
(Ⅱ)記函數(shù)f(α)=
BP
CA
,α∈(-
π
8
,
π
2
),試求函數(shù)f(α)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了對(duì)本班學(xué)生的考試成績(jī)進(jìn)行分析,決定從全班25名女同學(xué),15名男同學(xué)中隨機(jī)抽取一個(gè)容量為8的樣本進(jìn)行分析.
(1)如果按性別比例分層抽樣,男女生各抽取多少名才符合抽樣要求?
(2)隨機(jī)抽出8位,他們的數(shù)學(xué)分?jǐn)?shù).物理分?jǐn)?shù)對(duì)應(yīng)如下表:
①若規(guī)定85分以上(包括85分)為優(yōu)秀,在該班隨機(jī)調(diào)查一位同學(xué),他的數(shù)學(xué)和物理分?jǐn)?shù)均為優(yōu)秀的概率;
學(xué)生編號(hào)12345678
數(shù)學(xué)分?jǐn)?shù)x6065707580859095
物理分?jǐn)?shù)y7277808488909395
②根據(jù)上表數(shù)據(jù)用變量y與x的相關(guān)系數(shù)或散點(diǎn)圖說(shuō)明物理成績(jī)y與數(shù)學(xué)成績(jī)x之間是否具有線性相關(guān)性?如果具有線性相關(guān)性,求y與x的線性回歸方程(系數(shù)精確到0.01),如果不具有線性相關(guān)性,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a2=5,S9=99.
(1)求an及Sn;
(2)若數(shù)列{bn}滿足bn=
4
an2-1
,n∈N*,證明數(shù)列{bn}的前n項(xiàng)和Tn滿足Tn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx+x2
(Ⅰ)求h(x)=f(x)-3x的極值;
(Ⅱ)設(shè)f(x)=2f(x)-3x2-kx∈R,若函數(shù)f(x)存在兩個(gè)零點(diǎn)m,n(0<m<n),且滿足2x0=m+n,問(wèn):函數(shù)f(x)在(x0,F(xiàn)(x0)處的切線能否平行于x軸?若能,求出該切線方程,若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C過(guò)點(diǎn)P(
2
2
2
2
),且與圓M:(x+2)2+(y+2)2=r2(r>0)關(guān)于直線x+y+2=0對(duì)稱.
(Ⅰ)求圓C的方程;
(Ⅱ)設(shè)Q為圓C上的一個(gè)動(dòng)點(diǎn),求
PQ
MQ
的最小值;
(Ⅲ)過(guò)點(diǎn)P作兩條相異直線分別與圓C相交于A,B,且直線PA和直線PB的傾斜角互補(bǔ),O為坐標(biāo)原點(diǎn),試判斷直線OP和AB是否平行?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是首項(xiàng)為a1=
1
4
,公比q=
1
4
的等比數(shù)列,設(shè)bn+2=3log 
1
4
an(∈N*),數(shù)列{cn}滿足cn=an•bn
(1)求證:{bn}是等差數(shù)列;
(2)求數(shù)列{bn}的前n項(xiàng)和Sn;
(3)(理科)求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案