如圖,在四面體ABCD中,平面ABC⊥平面BCD,AB⊥AC,DC⊥BC,求證:平面ABD⊥平面ACD.
考點:平面與平面垂直的判定
專題:空間位置關(guān)系與距離
分析:由平面ABC⊥平面BCD,DC⊥BC,可得CD⊥平面ABC,進而CD⊥AB,結(jié)合AB⊥AC和線面垂直的判定定理,可得AB⊥平面ACD,進而平面ABD⊥平面ACD.
解答: 證明:∵平面ABC⊥平面BCD,DC⊥BC,平面ABC∩平面BCD=BC,DC?平面BCD,
∴CD⊥平面ABC,
又∵AB?平面ABC,
∴CD⊥AB,
又∵AB⊥AC,AC,CD?平面ACD,AC∩CD=C,
∴AB⊥平面ACD,
又∵AB?平面ABD,
∴平面ABD⊥平面ACD.
點評:本題以正三棱錐為載體,考查了面面垂直的判定定理,線面垂直的判定定理,熟練掌握空間線線垂直,線面垂直及面面垂直的轉(zhuǎn)化方法是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

式子log327的值為( 。
A、9B、18C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前5項和為105,且a20=2a5
(Ⅰ)求數(shù)列{an}的通項公式;   
(Ⅱ)記bn=
an2n-1
7
.求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

探照燈的反射鏡的縱斷面是拋物線的一部分,安裝燈源的位置在拋物線的焦點F處,如果F到燈口平面的距離恰好等于燈口的半徑,已知燈口的半徑為30cm,那么燈深為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(3,1)、B(5,2)、C(2t,2-t),若存在實數(shù)λ使得
OC
OA
+(1-λ)
OB
,則t=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cos2x-2
3
sinxcosx.
(1)求函數(shù)f(x)的最小正周期及單調(diào)遞減區(qū)間;
(2)在△ABC中,若f(C)=-1,若sinA,sinC,sinB成等比數(shù)列,
CA
•(
AB
-
AC
)=18,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知三棱錐P-ABC中,∠ACB=90°,BC=4,AB=20,D為AB的中點,且△PDB是等邊三角形,PA⊥PC.
(1)求證:平面PAC⊥平面ABC;
(2)求二面角D-AP-C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:如圖,點B是AD的中點,點E是AB的中點,AB=AC.求證:CE=
1
2
CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,x),
b
=(x2+x,-x),解關(guān)于x的不等式
a
b
+2>m(
2
a
b
+1)(其中m是滿足m≤-2的常數(shù)).

查看答案和解析>>

同步練習(xí)冊答案