【題目】設(shè)Sn為數(shù)列{cn}的前n項(xiàng)和,an=2n , bn=50﹣3n,cn= .
(1)求c4與c8的等差中項(xiàng);
(2)當(dāng)n>5時(shí),設(shè)數(shù)列{Sn}的前n項(xiàng)和為T(mén)n .
(。┣骉n;
(ⅱ)當(dāng)n>5時(shí),判斷數(shù)列{Tn﹣34ln}的單調(diào)性.
【答案】
(1)解:∵a4<b4=38,∴c4=38,
∵b8<a8=256,∴c8=256,
∴c4與c8的等差中項(xiàng)為 = .
(2)解:(ⅰ)當(dāng)n≤5時(shí),an<bn,
則S1=47,S2=91,S3=132,S4=170,S5=205,
當(dāng)n=5時(shí),an=bn,
則Sn=b1+b2+b3+b4+b5+a6+a7+…+an
=205+ =2n+1+141.
∴當(dāng)n>5時(shí),Tn=47+91+132+170+205+(27+141)+(28+141)+…+(2n+1+141)
=645+ +141(n﹣5)=2n+2+141n﹣188.
(ⅱ)設(shè)dn=Tn﹣341n=2n+2﹣200n﹣188,
dn+1﹣dn=2n+2﹣200,
當(dāng)n>5時(shí),2n+2﹣200>0,
∴dn+1>dn,
∴當(dāng)n>5時(shí),數(shù)列{Tn﹣34ln}的單調(diào)遞增
【解析】1、根據(jù)等差中項(xiàng)的定義求得。
2、由題意分情況可得(ⅰ)當(dāng)n≤5時(shí),可證明當(dāng)n=5時(shí),an=bn,則Sn=b1+b2+b3+b4+b5+a6+a7+…+an=2n+1+141.當(dāng)n>5時(shí),Tn==2n+2+141n﹣188。(ⅱ)設(shè)dn=Tn﹣341n=2n+2﹣200n﹣188,當(dāng)n>5時(shí),2n+2﹣200>0,∴dn+1>dn,即可得證當(dāng)n>5時(shí),數(shù)列{Tn﹣34ln}的單調(diào)遞增。
【考點(diǎn)精析】關(guān)于本題考查的數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式,需要了解數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖為某校語(yǔ)言類(lèi)專業(yè)N名畢業(yè)生的綜合測(cè)評(píng)成績(jī)(百分制)分布直方圖,已知80~90分?jǐn)?shù)段的學(xué)員數(shù)為21人. (Ⅰ)求該專業(yè)畢業(yè)總?cè)藬?shù)N和90~95分?jǐn)?shù)段內(nèi)的人數(shù)n;
(Ⅱ)現(xiàn)欲將90~95分?jǐn)?shù)段內(nèi)的n名人分配到幾所學(xué)校,從中安排2人到甲學(xué)校去,若n人中僅有兩名男生,求安排結(jié)果至少有一名男生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=lnx+ x2 .
(1)求曲線f(x)在x=1處的切線方程;
(2)設(shè)P為曲線f(x)上的點(diǎn),求曲線C在點(diǎn)P處切線的斜率的最小值及傾斜角α的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)向量 , , 滿足| |=2,| + |=6,| |=| |,且 ⊥ ,則| ﹣ |的取值范圍為( )
A.[4,8]
B.[4 ,8 ]
C.(4,8)
D.(4 ,8 )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知2sinA﹣cosB=2sinBcosC,且角B為鈍角.
(1)求角C的大。
(2)若a=2,b2+c2﹣a2= bc,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用反證法證明:已知a,b均為有理數(shù),且 和 都是無(wú)理數(shù),求證: 是無(wú)理數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方體ABCD-A1B1C1D1中,點(diǎn)M是A1D1的中點(diǎn),點(diǎn)N是CD的中點(diǎn),用反證法證明直線BM與直線A1N是兩條異面直線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定圓M: =16,動(dòng)圓N過(guò)點(diǎn)F 且與圓M相切,記圓心N的軌跡為E.
(I)求軌跡E的方程;
(Ⅱ)設(shè)點(diǎn)A,B,C在E上運(yùn)動(dòng),A與B關(guān)于原點(diǎn)對(duì)稱,且|AC|=|CB|,當(dāng)△ABC的面積最小時(shí),求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)f(x),又 的圖象與x軸有且僅有一個(gè)公共點(diǎn),且f′(x)=1﹣2x.
(1)求f(x)的表達(dá)式.
(2)若直線y=kx把y=f(x)的圖象與x軸所圍成的圖形的面積二等分,求k的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com