(本小題共13分)在等差數(shù)列中,,其前項和為,等比數(shù)列的各項均為正數(shù),,公比為,且, .
(Ⅰ)求與;
(Ⅱ)證明:≤.
解:(Ⅰ)設的公差為,
因為所以
解得 或(舍),.
故 ,. ……………6分
(Ⅱ)因為,
所以. ………9分
故
. ………11分
因為≥,所以≤,于是≤,
所以≤.
即≤. ……………13分
【解析】本題考查等差數(shù)列和等比數(shù)列的通項公式以及等比數(shù)列的前n項和,考查學生利用基本量思想和方程思想的解題能力。清晰數(shù)列的通項公式和求和公式聯(lián)立方程求解是解決本類題目常用的解題思路,考查學生的計算能力。在數(shù)列求和問題中,由于題目的千變萬化,使得不少同學一籌莫展,方法老師也介紹過,就不清楚什么特征用什么方法.為此提供一個通法 “特征聯(lián)想法”:就是抓住數(shù)列的通項公式的特征,再去聯(lián)想常用數(shù)列的求和方法.通項公式作為數(shù)列的靈魂,只有抓住它的特征,才能對號入座,得到求和方法.
特征一:,數(shù)列的通項公式能夠分解成幾部分,一般用“分組求和法”.特征二:,數(shù)列的通項公式能夠分解成等差數(shù)列和等比數(shù)列的乘積,一般用“錯位相減法”.特征三:,數(shù)列的通項公式是一個分式結構,一般采用“裂項相消法”.特征四:,數(shù)列的通項公式是一個組合數(shù)和等差數(shù)列通項公式組成,一般采用“倒序相加法”.本題第二問采用裂項相消法,結合不等式的放縮法進行證明.
科目:高中數(shù)學 來源:2011-2012學年北京市豐臺區(qū)高三上學期期末考試理科數(shù)學 題型:解答題
.(本小題共13分)在平面直角坐標系xOy中,為坐標原點,動點與兩個定點,的距離之比為.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)若直線:與曲線交于,兩點,在曲線上是否存在一點,使得,若存在,求出此時直線的斜率;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年北京市豐臺區(qū)高三上學期期末考試文科數(shù)學 題型:解答題
(本小題共13分)在平面直角坐標系xOy中,為坐標原點,以為圓心的圓與直線相切.
(Ⅰ)求圓的方程;
(Ⅱ)直線:與圓交于,兩點,在圓上是否存在一點,使得四邊形 為菱形,若存在,求出此時直線的斜率;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年北京市房山區(qū)高三統(tǒng)練數(shù)學理卷 題型:解答題
(本小題共13分)
在平面直角坐標系中,已知圓的圓心為,過點且斜率為的直線與圓相交于不同的兩點.
(Ⅰ)求圓的面積;
(Ⅱ)求的取值范圍;
(Ⅲ)是否存在常數(shù),使得向量與共線?如果存在,求的值;如果不存在,請說
明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年北京市豐臺區(qū)高三下學期統(tǒng)一練習數(shù)學理卷 題型:解答題
(本小題共13分)
在△ABC中,a,b,c分別為內角A,B,C的對邊,且b2+c2-a2=bc.
(Ⅰ)求角A的大;
(Ⅱ)設函數(shù),當取最大值時,判斷△ABC的形狀.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com