已知橢圓=1(a>b>0)的右焦點為F,經(jīng)過點F作傾斜角為135°的直線l交橢圓于A、B兩點,線段AB的中點為M,且直線AB與OM的夾角為,且tan=3,求這個橢圓的離心率.

答案:
解析:

  解:設(shè)點A(x1,y1)、B(x2,y2),AB的中點為M(x0,y0),則=1,=1,

  兩式相減可得kAB·=-1,

  所以a2y0=b2x0

  又kOM=1-e2,而||=tan=3,

  故kOM或kOM=2(∵a>b,<1,∴kOM=2舍去),

  所以1-e2,e=為所求.

  解析:本題先根據(jù)題意求出直線AB的斜率,再依據(jù)直線與橢圓的方程聯(lián)立消去其中一個未知數(shù),找到相應(yīng)的兩個交點A、B的橫(或縱)坐標之間的關(guān)系,從而表示出相應(yīng)的中點M的坐標,從而將問題解決.


提示:

對于有關(guān)直線與橢圓的交點問題的解決,通常聯(lián)立直線與橢圓的方程消去其中的一個未知數(shù),從而利用根與系數(shù)間的關(guān)系將兩個交點的橫(或縱)坐標間的關(guān)系找到,再利用已知條件解決相關(guān)的問題.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓=1(ab>0)的一個頂點為A(0,1),離心率為,

過點B(0,-2)及左焦點F1的直線交橢圓于CD兩點,右焦點設(shè)為F2.

(1)求橢圓的方程;

(2)求△CDF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年全國普通高等學(xué)校招生統(tǒng)一考試理科數(shù)學(xué)(新課標1卷解析版) 題型:選擇題

已知橢圓=1(a>b>0)的右焦點為F(3,0),過點F的直線交橢圓于A、B兩點。若AB的中點坐標為(1,-1),則E的方程為    (             )

A、=1    B、=1           

C、=1    D、=1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省濟寧市高三上學(xué)期期末模擬文科數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)已知橢圓=1(a>b>0)的一個焦點是圓x2+y2-6x+8=0的圓心,且短軸長為8,則橢圓的左頂點為(   )

A.(-3,0)          B.(-4,0)          C.(-10,0)         D.(-5,0)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江蘇省高二9月份質(zhì)量檢測數(shù)學(xué)試卷(解析版) 題型:填空題

(本題滿分14分)

已知橢圓=1(a>b>0)的左右頂點為,上下頂點為, 左右焦點為,若為等腰直角三角形(1)求橢圓的離心率(2)若的面積為6,求橢圓的方程

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆江西省高二第二次月考文科數(shù)學(xué) 題型:選擇題

已知橢圓=1(a>b>0)的左焦點為F,右頂點為A,點B在橢圓上,且BF⊥x軸,直線AB交y軸于點P.若=2,則橢圓的離心率是(  )

A.         B.              C.            D.

 

查看答案和解析>>

同步練習(xí)冊答案