方程6πsinx=x的解的個(gè)數(shù)為( 。
A、8B、9C、10D、11
考點(diǎn):根的存在性及根的個(gè)數(shù)判斷
專題:計(jì)算題,三角函數(shù)的求值
分析:把解方程
x
=sinx轉(zhuǎn)化成求函數(shù)y1=
x
和y2=sinx的交點(diǎn)問題,即可得出結(jié)論.
解答: 解:將方程6πsinx=x變形為
x
=sinx,把解方程
x
=sinx轉(zhuǎn)化成求函數(shù)y1=
x
和y2=sinx的交點(diǎn)問題,再考慮y1=
x
取到1時(shí),x=6π,而sin(6π)=0,以后就不相交了,在6π之前都相交,共5個(gè),
根據(jù)二函數(shù)均為奇函數(shù),那么其交點(diǎn)有5+5+1(原點(diǎn)也是交點(diǎn))=11個(gè).
故選:D.
點(diǎn)評(píng):本題考查根的存在性及根的個(gè)數(shù)判斷,考查學(xué)生分析解決問題的能力,難度中等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin(-
π
3
x+
π
4
)的周期是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從甲地到乙地通話x分鐘的電話費(fèi),A公司由f(x)=0.8x(元)給出,B公司由g(x)=1.08×(0.60×[x]+1)(元)給出,其中x≥0,[x]是小于或等于x的最大整數(shù)(如[2]=2,[2.9]=2,[3.2]=3),若從甲地到乙地通話時(shí)間為5.5分鐘,則選擇
 
公司通話費(fèi)更便宜.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要得到函數(shù)f(x)=sin(2x-
π
3
)的圖象,只需將f(x)=sin2x的圖象向右平移ρ(0<ρ<2π)個(gè)單位,則ρ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的初相為
π
4
,且f(x)的圖象過點(diǎn)P(
π
3
,A),則函數(shù)f(x)的最小正周期的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a>3,則方程x3-ax2+1=0在(0,2)上的實(shí)根個(gè)數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“p:8+7=16,q:π>3”構(gòu)成的復(fù)合命題,下列判斷正確的是(  )
A、“p∨q”為真,“p∧q”為假,“¬p”為真
B、“p∨q”為假,“p∧q”為假,“¬p”為真
C、“p∨q”為真,“p∧q”為假,“¬p”為假
D、“p∨q”為假,“p∧q”為真,“¬p”為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

log 
1
9
3=( 。
A、-2
B、2
C、-
1
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩條平行線中的一條平行于一個(gè)平面,那么另一條與此平面的位置關(guān)系是(  )
A、平行
B、平行或在平面內(nèi)
C、相交或平行
D、相交或平行或在平面內(nèi)

查看答案和解析>>

同步練習(xí)冊(cè)答案