根據市場調查結果,預測某種家用商品從年初開始的n個月內累積的需求量Sn(萬件)近似地滿足關系式Sn=(21n-n2-5)(n=1,2,…,12),按此預測,在本年度內,需求量超過1.5萬件的月份是________.
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第八章第3課時練習卷(解析版) 題型:解答題
如圖,在三棱錐P-ABC中,△PAC,△ABC分別是以A、B為直角頂點的等腰直角三角形,AB=1.現給出三個條件:①PB=;②PB⊥BC;③平面PAB⊥平面ABC.試從中任意選取一個作為已知條件,并證明:PA⊥平面ABC;
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第八章第1課時練習卷(解析版) 題型:填空題
如圖是正四面體的平面展開圖,G,H,M,N分別為DE,BE,EF,EC的中點,在這個正四面體中:
①GH與EF平行;
②BD與MN為異面直線;
③GH與MN成60°角;
④DE與MN垂直.
以上四個命題中,正確命題的是________.(填序號)
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第五章第6課時練習卷(解析版) 題型:填空題
等差數列{an}的前n項和為Sn,已知S10=0,S15=25,則nSn的最小值為________.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第五章第6課時練習卷(解析版) 題型:解答題
已知數列an=n-16,bn=(-1)n|n-15|,其中n∈N*.
(1)求滿足an+1=|bn|的所有正整數n的集合;
(2)若n≠16,求數列的最大值和最小值;
(3)記數列{anbn}的前n項和為Sn,求所有滿足S2m=S2n(m<n)的有序整數對(m,n).
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第五章第5課時練習卷(解析版) 題型:解答題
已知數列{an}前n項和為Sn,且a2an=S2+Sn對一切正整數都成立.
(1)求a1,a2的值;
(2)設a1>0,數列前n項和為Tn,當n為何值時,Tn最大?并求出最大值.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第五章第5課時練習卷(解析版) 題型:解答題
設C1、C2、…、Cn、…是坐標平面上的一列圓,它們的圓心都在軸的正半軸上,且都與直線y=x相切,對每一個正整數n,圓Cn都與圓Cn+1相互外切,以rn表示Cn的半徑,已知{rn}為遞增數列.
(1)證明:{rn}為等比數列;
(2)設r1=1,求數列的前n項和.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第五章第2課時練習卷(解析版) 題型:填空題
已知數列{an}為等差數列,若a1=-3,11a5=5a8,則使前n項和Sn取最小值的n=________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com