在直三棱柱中,AA1=AB=BC=3,AC=2,D是AC中點(diǎn).
(1)求證:B1C∥平面A1BD;
(2)求點(diǎn)B1到平面A1BD的距離;
(3)求二面角A1-DB-B1的余弦值.
考點(diǎn):用空間向量求平面間的夾角,二面角的平面角及求法
專題:綜合題,空間位置關(guān)系與距離,空間角
分析:(1)連結(jié)AB1,交A1B于點(diǎn)O,連結(jié)OD,利用三角形的中位線定理,推導(dǎo)出OD∥B1C,由此能夠證明B1C∥平面A1BD.
(2)以D為坐標(biāo)原點(diǎn),以DC為x軸,以DB為y軸,以過D點(diǎn)垂直于AC的直線為z軸,建立空間直角坐標(biāo)系,求出平面A1BD的法向量,即可求出點(diǎn)B1到平面A1BD的距離;
(3)利用向量法能求出二面角A1-BD-B1的余弦值.
解答: 解:(1)連結(jié)AB1,交A1B于點(diǎn)O,連結(jié)OD,
∵在直三棱柱ABC-A1B1C1中,AA1=AB=BC=3,
∴ABB1A1是正方形,∴O是AB1的中點(diǎn),
∵D是AC的中點(diǎn),∴OD是△ACB1的中位線,∴OD∥B1C,
∵B1C不包含于平面A1BD,OD?平面A1BD,
∴B1C∥平面A1BD.
(2)以D為坐標(biāo)原點(diǎn),以DC為x軸,以DB為y軸,
以過D點(diǎn)垂直于AC的直線為z軸,建立空間直角坐標(biāo)系,
∵AA1=AB=BC=3,AC=2,D是AC的中點(diǎn),
∴A1(-1,0,3),B(0,2
2
,0),
D(0,0,0),B1(0,2
2
,3),
DA1
=(-1,0,3),
DB
=(0,2
2
,0),
DB1
=(0,2
2
,3),
設(shè)平面A1BD的法向量
m
=(x,y,z),則
-x+3z=0
2
2
y=0
,
m
=(3,0,1),
∴d=
|
n
DB1
|
|
n
|
=
3
10
10

(3 )平面B1BD的法向量為
DC
=(1,0,0),
∴cos<
DC
n
>=
3
10
10

∴二面角的余弦值為
3
10
10
點(diǎn)評:本題考查直線與平面平行的證明,考查二面角的余弦值的求法,是中檔題,解題時(shí)要注意向量法的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P是圓x2+(y-2)2=1上的一個(gè)動(dòng)點(diǎn),Q為雙曲線x2-y2=1上一動(dòng)點(diǎn),則PQ的最小值是( 。
A、
3
B、
5
C、
5
-2
D、
3
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在[0,2π)上滿足sinx≥
1
2
的x的取值范圍是( 。
A、[0,
π
6
]
B、[0,
π
6
]∪[
π
6
,π]
C、[
π
6
,
6
]
D、[0,
π
6
]∪[
6
,2π]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖直四棱柱ABCD-A1B1C1D1中側(cè)棱AA1=
6
,底面ABCD是棱形,AB=2,∠ABC=60°,P是側(cè)棱BB1的一個(gè)動(dòng)點(diǎn).若點(diǎn)P是BB1的中點(diǎn),求三棱錐P-ACD1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從9個(gè)男短跑運(yùn)動(dòng)員中選4個(gè)組成4*100米接力比賽,要求運(yùn)動(dòng)員甲不跑第一棒,運(yùn)動(dòng)員乙不跑第四棒,則共有不同的選拔接力比賽方法有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=-x+log2
1-x
1+x

(1)求f(
1
2014
)+f(-
1
2014
)的值;
(2)當(dāng)x∈(-a,a](其中a∈(-1,1)且a為常數(shù))時(shí),f(x)是否存在最小值?如果存在,求函數(shù)最小值;若果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x+
π
6
)+sin(2x-
π
6
)+2sin2x-1.
(1)求f(
π
3
)的值;
(2)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
(3)說明y=f(x)的圖象是如何由函數(shù)y=sinx的圖象變換所得.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出求滿足1+2+3+…+n>2014的最小正整數(shù)n的一種算法,并畫出程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-2x-3=0},集合B={x|mx+1=0},若B⊆A,則實(shí)數(shù)m的集合為( 。
A、{-
1
3
}
B、{1}
C、{-
1
3
,1}
D、{0,-
1
3
,1}

查看答案和解析>>

同步練習(xí)冊答案