在公差不為零的等差數(shù)列{an}中,a1,a2為方程x2-a3x+a4=0的根,求{an}的通項(xiàng)公式.
分析:設(shè)數(shù)列{an}的公差為d,由已知可得即
2a1+d=a1+2d
a1•(a1+d)=a 1+3d
,解得a1和d的值,即可求得{an}的通項(xiàng)公式.
解答:解:設(shè)數(shù)列{an}的公差為d,由已知得
a1+a2=a3
a1a2=a4
,
2a1+d=a1+2d
a1•(a1+d)=a 1+3d
,解得a1=d=2,
所以,{an}的通項(xiàng)公式為 an=2+(n-1)•2=2n.
點(diǎn)評(píng):本題主要考查等差數(shù)列的定義和性質(zhì),等差數(shù)列的通項(xiàng)公式,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在公差不為零的等差數(shù)列{an}中,若S8是S4的3倍,則a1與d的比為:( 。
A、5:2B、2:5C、5:1D、1:5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

6、在公差不為零的等差數(shù)列|an|中,2a3-a72+2a11=0,數(shù)列|bn|是等比數(shù)列,且b7=a7,則log2(b6b8)的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在公差不為零的等差數(shù)列{an}和等比數(shù)列{bn}中,已知a1=b1=1,a2=b2,a8=b3;
(1)求{an}的公差d和{bn}的公比q;
(2)設(shè)
1
cn
=
1
5
(an+4),求數(shù)列{cncn+1}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在公差不為零的等差數(shù)列{an}中,S10=4S5,則a1:d等于( 。
A、
1
4
B、
1
2
C、2
D、4

查看答案和解析>>

同步練習(xí)冊(cè)答案