【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)).是曲線上的動點,將線段點順時針旋轉(zhuǎn)得到線段,設點的軌跡為曲線.以坐標原點為極點,軸正半軸為極軸建立極坐標系.

(I)求曲線,的極坐標方程;

(II)在(I)的條件下,若射線與曲線,分別交于兩點(除極點外),且有定點,求面積.

【答案】(I)的極坐標方程為的極坐標方程為;(II).

【解析】

(Ⅰ)由曲線的參數(shù)方程先化為普通方程,進而可化為極坐標方程;根據(jù)曲線的極坐標方程,求出的極坐標方程即可;

(II)先求出兩點的極坐標,進而可求出,再由即可求出結(jié)果.

(Ⅰ)由題設,得的直角坐標方程為,

的極坐標方程為,即

設點,則由已知得,

代入的極坐標方程得,

的極坐標方程為

(Ⅱ)將代入的極坐標方程得,

又因為,所以,

,

所以

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的導函數(shù)為

(1)求函數(shù)的極大值;

(2)若函數(shù)有兩個零點,求a的取值范圍。

(3)在(2)的條件下,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線.

1)若過點作與拋物線相交的弦,要使其弦長為2的弦有幾條?并說明理由.

2)試研究過點,且使弦長為2的弦有幾條?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,有一種游戲畫板,要求參與者用六種顏色給畫板涂色,這六種顏色分別為紅色、黃色1、黃色2、黃色3、金色1、金色2,其中黃色1、黃色2、黃色3是三種不同的顏色,金色1、金色2是兩種不同的顏色,要求紅色不在兩端,黃色1、黃色2、黃色3有且僅有兩種相鄰,則不同的涂色方案有( 。

A.120種B.240種C.144種D.288種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】全民健身倡導全民做到每天參加一次以上的體育健身活動,旨在全面提高國民體質(zhì)和健康水平.某市的體育部門對某小區(qū)的4000人進行了運動參與度統(tǒng)計評分(滿分100分),得到了如下的頻率分布直方圖:

1)求這4000人的運動參與度的平均得分(同一組中數(shù)據(jù)用該組區(qū)間中點作代表);

2)由直方圖可認為這4000人的運動參與度的得分服從正態(tài)分布,其中,分別取平均得分和方差,那么選取的4000人中運動參與度得分超過84.81分(含84.81分)的人數(shù)估計有多少人?

3)如果用這4000人得分的情況來估計全市所有人的得分情況,現(xiàn)從全市隨機抽取4人,記運動參與度的得分不超過84.81分的人數(shù)為,求.(精確到0.001

附:①;②,則;③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學為了解中學生的課外閱讀時間,決定在該中學的1200名男生和800名女生中按分層抽樣的方法抽取20名學生,對他們的課外閱讀時間進行問卷調(diào)查,F(xiàn)在按課外閱讀時間的情況將學生分成三類:A類(不參加課外閱讀),B類(參加課外閱讀,但平均每周參加課外閱讀的時間不超過3小時),C類(參加課外閱讀,且平均每周參加課外閱讀的時間超過3小時)。調(diào)查結(jié)果如下表:

A類

B類

C類

男生

x

5

3

女生

y

3

3

(I)求出表中x,y的值;

(II)根據(jù)表中的統(tǒng)計數(shù)據(jù),完成下面的列聯(lián)表,并判斷是否有90%的把握認為“參加課外閱讀與否”與性別有關;

男生

女生

總計

不參加課外閱讀

參加課外閱讀

總計

(III)從抽出的女生中再隨機抽取3人進一步了解情況,記X為抽取的這3名女生中A類人數(shù)和C類人數(shù)差的絕對值,求X的數(shù)學期望。

附:K2=)

P(K2≥k0

0.10

0.05

0.01

k0

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班教室桌椅6740名同學空出最后一排的某兩個位置,其余人按身高和視力排座位班中有24人身高高,18人視力好其中,6名同學同時具備此兩個條件已知若一名同學個子矮視力又不好,則他必須坐在前三排;若一名同學個子高視力又好則他必須坐在最后三排設排座位的方法是,的質(zhì)因數(shù)分解中的2的次數(shù)是______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國全力抗擊“新冠疫情”對全球做出了巨大貢獻,廣大中小學生在這場“戰(zhàn)疫”中也通過各種方式作出了貢獻.某校團委準備組織一次“網(wǎng)上戰(zhàn)疫”的宣傳活動,活動包含4項子活動.現(xiàn)隨機抽取了5個班級中的25名同學進行關于活動方案的問卷調(diào)查,其中關于4項子活動的贊同情況統(tǒng)計如下:

班級代碼

A

B

C

D

E

合計

4項子活動全部贊同的人數(shù)

3

4

8

3

2

20

4項子活動不全部贊同的人數(shù)

1

1

0

2

1

5

合計問卷調(diào)查人數(shù)

4

5

8

5

3

25

現(xiàn)欲針對4項子活動的活動內(nèi)容作進一步采訪調(diào)研,每項子活動采訪1名學生.

1)若每項子活動都從這25名同學中隨機選取1人采訪,求4次采訪中恰有1次采訪的學生對“4項子活動不全部贊同”的概率;

2)若從A班和E班的被問卷調(diào)查者中各隨機選取2人作為采訪調(diào)研的對象,記選取的4人中“4項子活動全部贊同”的人數(shù)為X,求隨機變量X的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有編號依次為1,2,3,4,5,6的6名學生參加數(shù)學競賽選拔,今有甲,乙,丙,丁四位老師在猜誰將獲得第一名,甲猜不是3號就是5號;乙猜6號不可能;丙猜是1號,2號,4號中的一個;丁猜2號,3號,4號都不可能,若以上四位老師只有一位猜對,則猜對者是___________(填甲、乙、丙、丁)

查看答案和解析>>

同步練習冊答案