【題目】提高過江大橋的車輛通行能力可改善整個(gè)城市的交通狀況,在一般情況下,大橋上的車流速度(單位:千米/小時(shí))是車流密度(單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)到輛/千米時(shí),造成堵塞,此時(shí)車流速度為;當(dāng)車流密度不超過輛/千米時(shí),車流速度為千米/小時(shí),研究表明:當(dāng)時(shí),車流速度是車流密度的一次函數(shù).
(1)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(2)當(dāng)車流密度為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上某觀測(cè)點(diǎn)的車輛數(shù),單位:輛/小時(shí))可以達(dá)到最大,并求出最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知a,b,N都是正數(shù),a≠1,b≠1,證明對(duì)數(shù)換底公式:logaN=;
(2)寫出對(duì)數(shù)換底公式的一個(gè)性質(zhì)(不用證明),并舉例應(yīng)用這個(gè)性質(zhì).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x-a|-1,(a為常數(shù)).
(1)若f(x)在x∈[0,2]上的最大值為3,求實(shí)數(shù)a的值;
(2)已知g(x)=xf(x)+a-m,若存在實(shí)數(shù)a∈(-1,2],使得函數(shù)g(x)有三個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解我市參加2018年全國(guó)高中數(shù)學(xué)聯(lián)賽的學(xué)生考試結(jié)果情況,從中選取60名同學(xué)將其成績(jī)(百分制,均為正數(shù))分成六組后,得到部分頻率分布直方圖(如圖),觀察圖形,回答下列問題:
(1)求分?jǐn)?shù)在內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)根據(jù)頻率分布直方圖,估計(jì)本次考試成績(jī)的眾數(shù)、均值;
(3)根據(jù)評(píng)獎(jiǎng)規(guī)則,排名靠前10%的同學(xué)可以獲獎(jiǎng),請(qǐng)你估計(jì)獲獎(jiǎng)的同學(xué)至少需要所少分?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求證:直線是曲線的切線;
(Ⅲ)寫出的一個(gè)值,使得函數(shù)有三個(gè)不同零點(diǎn)(只需直接寫出數(shù)值)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某上市公司股票在30天內(nèi)每股的交易價(jià)格P(元)關(guān)于時(shí)間t(天)的函數(shù)關(guān)系為,該股票在30天內(nèi)的日交易量Q(萬股)關(guān)于時(shí)間t(天)的函數(shù)為一次函數(shù),其圖象過點(diǎn)和點(diǎn).
(1)求出日交易量Q(萬股)與時(shí)間t(天)的一次函數(shù)關(guān)系式;
(2)用y(萬元)表示該股票日交易額,寫出y關(guān)于t的函數(shù)關(guān)系式,并求在這30天內(nèi)第幾天日交易額最大,最大值為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解所經(jīng)銷商品的使用情況,隨機(jī)問卷50名使用者,然后根據(jù)這50名的問卷評(píng)分?jǐn)?shù)據(jù),統(tǒng)計(jì)得到如圖所示的頻率布直方圖,其統(tǒng)計(jì)數(shù)據(jù)分組區(qū)間為[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求頻率分布直方圖中a的值并估計(jì)這50名使用者問卷評(píng)分?jǐn)?shù)據(jù)的中位數(shù);
(2)從評(píng)分在[40,60)的問卷者中,隨機(jī)抽取2人,求此2人評(píng)分都在[50,60)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線,點(diǎn), ,過點(diǎn)的直線與交于, 兩點(diǎn).
(1)當(dāng)與軸垂直時(shí),求直線的方程;
(2)證明: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com