【題目】已知圓,點是直線l:上的動點,若在圓C上總存在不同的兩點A,B使得,則的取值范圍是_____.
【答案】
【解析】
由在圓上總存在不同的兩點A,B使得可知四邊形OAPB是菱形,于是垂直平分.然后分類討論:當(dāng)直線的斜率為0時,此時在圓上不存在不同的兩點滿足條件.當(dāng)直線的斜率不存在時,可得,此時直線方程為為,滿足條件.當(dāng)直線的斜率存在且不為0時,利用,,可得直線方程為,圓心到直線的距離,即,再利用,即可解出所求范圍.
∵在圓上總存在不同的兩點使得,
∴四邊形OAPB是菱形,
∴直線垂直平分OP.
①當(dāng)直線的斜率為0時,由直線得,此時在圓上不存在不同的兩點滿足條件.
②當(dāng)直線的斜率不存在時,由直線可得,此時直線的方程為,滿足條件.
③當(dāng)直線的斜率存在且不為0時,
∵,,
∴.
∴直線的方程為,即,
由題意得圓心到直線的距離,即,
又,
∴,解得.
∴的取值范圍是.
故答案為:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國傳統(tǒng)文化中很多內(nèi)容體現(xiàn)了數(shù)學(xué)的對稱美,如圖所示的太極圖是由黑白兩個魚形紋組成的圓形圖案,充分展現(xiàn)了相互轉(zhuǎn)化、對稱統(tǒng)一的形式美、和諧美,給出定義:能夠?qū)AO的周長和面積同時平分的函數(shù)稱為這個圓的“優(yōu)美函數(shù)”,給出下列命題:
①對于任意一個圓O,其“優(yōu)美函數(shù)”有無數(shù)個;
②函數(shù)f(x)=ln()可以是某個圓的“優(yōu)美函數(shù)”;
③函數(shù)y=1+sinx可以同時是無數(shù)個圓的“優(yōu)美函數(shù)”;
④函數(shù)y=2x+1可以同時是無數(shù)個圓的“優(yōu)美函數(shù)”;
⑤函數(shù)y=f(x)是“優(yōu)美函數(shù)”的充要條件為函數(shù)y=f(x)的圖象是中心對稱圖形.
其中正確的命題是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的右頂點為,上頂點為.已知橢圓的焦距為,直線的斜率為.
(1)求橢圓的標準方程;
(2)設(shè)直線()與橢圓交于,兩點,且點在第二象限.與延長線交于點,若的面積是面積的倍,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在圓心角為直角的扇形OAB區(qū)域中,M、N分別為OA、OB的中點,在M、N兩點處各有一個通信基站,其信號的覆蓋范圍分別為以OA、OB為直徑的圓,在扇形OAB內(nèi)隨機取一點,則此點無信號的概率是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,邊長為的正方形,,
(1)求證:平面;
(2)求二面角的余弦值;
(3)證明:在線段上存在點,使得,并求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的一個焦點是,且
(1)求雙曲線的方程
(2)設(shè)經(jīng)過焦點的直線的一個法向量為,當(dāng)直線與雙曲線的右支相交于不同的兩點時,求實數(shù)的取值范圍
(3)設(shè)(2)中直線與雙曲線的右支相交于兩點,問是否存在實數(shù),使得為銳角?若存在,請求出的范圍;若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD與BC是四面體ABCD中互相垂直的棱,BC=2. 若AD=2c,且AB+BD=AC+CD=2a,其中a、c為常數(shù),則四面體ABCD的體積的最大值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的個數(shù)是( )
①相關(guān)系數(shù)用來衡量兩個變量之間線性關(guān)系的強弱,越接近于1,相關(guān)性越弱;
②回歸直線過樣本點中心;
③相關(guān)指數(shù)用來刻畫回歸的效果,越小,說明模型的擬合效果越不好.
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖,在正方體中,點分別為棱,的中點,點為上底面的中心,過三點的平面把正方體分為兩部分,其中含的部分為,不含的部分為,連接和的任一點,設(shè)與平面所成角為,則的最大值為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com