【題目】在平面四邊形中,已知的面積是的面積的3倍,若存在正實數(shù)使得成立,則的最小值為( )

A.B.C.D.

【答案】D

【解析】

由△ACB面積是△ADC面積的3倍,結合三角形的面積公式可知3DFBE,然后結合相似三角形的性質可轉化為3,然后結合向量加減法的三角形法則可用,表示,然后根據(jù)向量共線定理可設,結合已知可求10,然后由,利用基本不等式可求

根據(jù)題意,如圖,連接ACBD,設ACBD交于點O,過點BBEAC與點E,過點DDFAC與點F,

若△ACB面積是△ADC面積的3倍,即3DFBE,

根據(jù)相似三角形的性質可知,3,

3)=

,

,

,

10,

當且僅當10,即x時取等號

故答案為:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在一次田徑比賽中,35名運動員的成績(單位:分鐘)的莖葉圖如圖所示。

若將運動員按成績由好到差編為135號,再用系統(tǒng)抽樣方法從中抽取5人,則其中成績在區(qū)間上的運動員人數(shù)為

A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為更好地落實農民工工資保證金制度,南方某市勞動保障部門調查了年下半年該市名農民工(其中技術工、非技術工各名)的月工資,得到這名農民工月工資的中位數(shù)為百元(假設這名農民工的月工資均在(百元)內)且月工資收入在(百元)內的人數(shù)為,并根據(jù)調查結果畫出如圖所示的頻率分布直方圖:

(Ⅰ)求,的值;

(Ⅱ)已知這名農民工中月工資高于平均數(shù)的技術工有名,非技術工有名,則能否在犯錯誤的概率不超過的前提下認為是不是技術工與月工資是否高于平均數(shù)有關系?

參考公式及數(shù)據(jù):,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:若數(shù)列中存在,其中,,,均為正整數(shù),且),則稱數(shù)列數(shù)列”.

1)若數(shù)列的前項和,求證:數(shù)列;

2)若是首項為1,公比為的等比數(shù)列,判斷是否是數(shù)列,說明理由;

3)若是公差為)的等差數(shù)列且),,求證:數(shù)列數(shù)列”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

(Ⅰ)當時,求證:

(Ⅱ)如果恒成立,求實數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在實數(shù)集R中,我們定義的大小關系為全體實數(shù)排了一個.類似的,我們在平面向量集上也可以定義一個稱的關系,記為.定義如下:對于任意兩個向量,當且僅當。按上述定義的關系,給出如下四個命題:

,則;

,則;

,則對于任意;

對于任意向量,若,則。

其中真命題的序號為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,圓F和拋物線,過F的直線與拋物線和圓依次交于A、B、C、D四點,求的值是( )

A.1B.2C.3D.無法確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)滿足:對任意實數(shù)以及定義中任意兩數(shù)、),恒有,則稱是下凸函數(shù).

(1)證明:函數(shù)是下凸函數(shù);

(2)判斷是不是下凸函數(shù),并說明理由;

(3)若是定義在上的下凸函數(shù),常數(shù),滿足:,,且,求證:,并求上的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為自然數(shù)1、23、4的一個全排列,且滿足,則這樣的排列有_______.

查看答案和解析>>

同步練習冊答案