過拋物線y2=2px(p>0)的焦點(diǎn)的一條直線和此拋物線相交,設(shè)兩個(gè)交點(diǎn)的坐標(biāo)分別為A(x1,y1)、B(x2,y2)求證:
(1)y1y2=-p2
(2)x1x2=
p2
4
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì)
專題:證明題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)設(shè)直線方程為x=my+
p
2
,代入y2=2px,可得y2-2mpy+p2=0,利用韋達(dá)定理可得結(jié)論;
(2)x1•x2=
y12
2p
y22
2p
,可得結(jié)論.
解答: 證明:(1)設(shè)直線方程為x=my+
p
2
,代入y2=2px,可得y2-2mpy+p2=0,
∴y1y2=-p2
(2)x1•x2=
y12
2p
y22
2p
=
p2
4
點(diǎn)評(píng):本題考查直線和拋物線的位置關(guān)系的綜合運(yùn)用,解題時(shí)要認(rèn)真審題,注意拋物線性質(zhì)的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點(diǎn),M為AD的中點(diǎn),PA=2AB=4.
(1)求證:EM∥平面PAB;
(2)求證:PC⊥AE;
(3)求三棱錐P-ACE的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx.
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)設(shè)A(x1,f(x1)),B(x2,f(x2)),且x1≠x2,證明:
f(x2)-f(x1)
x2-x1
<f′(
x1+x2
2
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩名運(yùn)動(dòng)員在4次訓(xùn)練中的得分情況如下面的莖葉圖所示.
(Ⅰ)分別計(jì)算甲、乙兩名運(yùn)動(dòng)員訓(xùn)練得分的平均數(shù)和方差,并指出誰的訓(xùn)練成績(jī)更好,為什么?
(Ⅱ)從甲、乙兩名運(yùn)動(dòng)的訓(xùn)練成績(jī)中各隨機(jī)抽取1次的得分,分別記為x,y,設(shè)ξ=|x-8|+|y-10|.求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD中,底面ABCD是菱形,AB=PA=PD=2,∠ABD=
π
3
,點(diǎn)E是AD的中點(diǎn),點(diǎn)Q是PC的中點(diǎn).
(Ⅰ)求證:EQ∥平面PAB;
(Ⅱ)求三棱錐B-PAD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:x-y+1=0和點(diǎn)A(1,0)
(Ⅰ)過點(diǎn)A作直線l的垂線,垂足為B,求點(diǎn)B的坐標(biāo);
(Ⅱ)若直線l與x軸的交點(diǎn)為C,將△ABC繞直線l旋轉(zhuǎn)一周,求所得幾何體的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的方程為x2+y2+6x-8y=0,直線l:y=kx+2k+1.
(Ⅰ)當(dāng)k=2時(shí),求圓C關(guān)于直線l對(duì)稱的圓M的方程;
(Ⅱ)求直線l被圓M截得的弦長(zhǎng)的最大值和最小值,并求出相應(yīng)的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=7sin(
2
3
x+
15
2
π)的最小正周期是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=
log4(2x-3)
x-1
的定義域?yàn)椋╟,+∞),則實(shí)數(shù)c等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案