|
|
要制作一個容積為4 m3,高為1 m的無蓋長方體容器,已知該溶器的底面造價是每平方米20元,側(cè)面造價是是每平方米10元,則該溶器的最低總造價是
|
[ ] |
A. |
80元
|
B. |
120元
|
C. |
160元
|
D. |
240元
|
|
|
答案:C
解析:
|
設池底長和寬分別為a,b,成本為y,則
∵長方形容器的容器為4 m3,高為1 m,
∴底面面積S=ab=4,y=20S+10[2(a+b)]=20(a+b)+80,
∵a+b≥2=4,∴當a=b=2時,y取最小值160,
即該容器的最低總造價是160元,故選:C.
|
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:課標綜合版 專題復習
題型:
|
|
設a=sin33°,b=cos55°,c=tan35°,則
|
[ ] |
A. |
a>b>c
|
B. |
b>c>a
|
C. |
c>b>a
|
D. |
c>a>b
|
|
|
查看答案和解析>>
科目:高中數(shù)學
來源:課標綜合版 專題復習
題型:
|
|
已知集合M={-1,0,1},N={0,1,2},則M∪N=
|
[ ] |
A. |
{-1,0,1}
|
B. |
{-1,0,1,2}
|
C. |
{-1,0,2}
|
D. |
{0,1}
|
|
|
查看答案和解析>>
科目:高中數(shù)學
來源:課標綜合版 專題復習
題型:
|
|
如圖,四邊形ABCD為正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于點F,F(xiàn)E∥CD,交PD于點E.
(1)證明:CF⊥平面ADF.
(2)求二面角D-AF-E的余弦值.
|
|
|
查看答案和解析>>
科目:高中數(shù)學
來源:課標綜合版 專題復習
題型:
|
|
閱讀下圖所示的程序框圖,運行相應的程序,輸出的n的值為
|
[ ] |
A. |
1
|
B. |
2
|
C. |
3
|
D. |
4
|
|
|
查看答案和解析>>
科目:高中數(shù)學
來源:課標綜合版 專題復習
題型:
|
|
在△ABC中,A=60°,AC=2,BC=,則AB等于________.
|
|
|
查看答案和解析>>
科目:高中數(shù)學
來源:課標綜合版 專題復習
題型:
|
|
已知曲線г上的點到點F(0,1)的距離比它到直線y=-3的距離小2.
(1)求曲線г的方程;
(2)曲線г在點P處的切線l與x軸交于點A.直線y=3分別與直線l及y軸交于點M,N,以MN為直徑作圓C,過點A作圓C的切線,切點為B,試探究:當點P在曲線г上運動(點P與原點不重合)時,線段AB的長度是否發(fā)生變化?證明你的結(jié)論.
|
|
|
查看答案和解析>>
科目:高中數(shù)學
來源:課標綜合版 專題復習
題型:
|
|
已知函數(shù)f(x)=cosx(sinx+cosx)-.
(1)若,且,求f(α)的值;
(2)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間.
|
|
|
查看答案和解析>>
科目:高中數(shù)學
來源:課標綜合版 專題復習
題型:
|
|
設函數(shù)f(x)=sin(ωx+φ),A>0,ω>0,若f(x)在區(qū)間上具有單調(diào)性,且,則f(x)的最小正周期為________.
|
|
|
查看答案和解析>>