精英家教網 > 高中數學 > 題目詳情
如圖所示的多面體中, 是菱形,是矩形,,

(1)求證:平;
(2)若,求四棱錐的體積.
(1)  (2))

試題分析:(1)利用直線與平面平行的判定定理證明,BC,利用面面平行的判定定理可得結論;
(2)首先要找到四棱錐,為此連接,,易證, 即為四棱錐的高,最后求得,可求四棱錐的體積

(1)由是菱形



是矩形



 
(2)連接,
是菱形,
,



為四棱錐的高
是菱形,
為等邊三角形,
;則
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,在四棱錐中,⊥底面,底面  
為正方形,,分別是,的 中點.
(1)求證:平面;
(2)求證:;
(3)若是線段上一動點,試確定點位置,
使平面,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,三棱柱ABC-A1B1C1的底面是邊長為2的正三角形且側棱垂直于底面,側棱長是,D是AC的中點.
 
(1)求證:B1C∥平面A1BD;
(2)求二面角A1-BD-A的大;
(3)求直線AB1與平面A1BD所成的角的正弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,三棱柱是直棱柱,.點分別為的中點.

(1)求證:平面;
(2)求點到平面的距離.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

下列命題正確的是(  )
A.若兩條直線和同一個平面所成的角相等,則這兩條直線平行
B.若一個平面內有三個點到另一個平面的距離相等,則這兩個平面平行
C.若一條直線平行于兩個相交平面,則這條直線與這兩個平面的交線平行
D.若兩個平面都垂直于第三個平面,則這兩個平面平行

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知m和n是兩條不同的直線,α和β是兩個不重合的平面,那么下面給出的條件中一定能推出m⊥β的是(  )
A.α⊥β,且m?α B.m∥n,且n⊥β
C.α⊥β,且m∥αD.m⊥n,且n∥β

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在三棱柱中,側棱垂直于底面,,,、分別為的中點.
(1)求證:平面平面;
(2)求證:平面;
(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,四棱錐P-ABCD的底面為正方形,側面PAD為等邊三角形,且側面PAD⊥底面ABCD.點M在底面內運動,且滿足MP=MC,則點M在正方形ABCD內的軌跡


A.                 B.                C.               D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

在正方體AC1中,若點P在對角線AC1上,且P點到三條棱CD 、A1D1、 BB1的距離都相等,則這樣的點共有  (   )
A.1 個        B.2 個      C.3 個         D.無窮多個

查看答案和解析>>

同步練習冊答案