一袋中裝有6個白球,3個紅球,現(xiàn)從袋中往外取球,每次取出一個,取出后記下球的顏色,然后放回,直到紅球出現(xiàn)9次停止.設(shè)停止時,取球次數(shù)為隨機(jī)變量X,則P(X=11)的值為( 。
A、C
 
9
11
1
3
8•(
2
3
3
B、C
 
8
10
1
3
8•(
2
3
2
C、C
 
8
10
1
3
9•(
2
3
2
D、(
1
3
8•(
2
3
3
考點(diǎn):離散型隨機(jī)變量的期望與方差
專題:計算題,概率與統(tǒng)計
分析:若X=11,則取11次停止,第11次取出的是紅球,前10次中有8次是紅球,先考慮哪8次取紅球,有C108種選擇,又因?yàn)橛?次取得是紅球,乘以取紅球的概率的8次方,還有2次取的是白球,乘以取白球的概率的平方.
解答: 解:若X=11,則取11次停止,第11次取出的是紅球,前10次中有8次是紅球,
則P(X=11)=C
 
8
10
1
3
9•(
2
3
2
故選:C.
點(diǎn)評:本題考查了n次獨(dú)立重復(fù)試驗(yàn)中某事件恰好發(fā)生k次的概率,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知2a+b=1,a>0,b>0,則
1
a
+
1
b
的最小值是( 。
A、2
2
B、3-2
2
C、3+2
2
D、3+
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α∈{-2,-1,
1
2
,1,2,3},則使冪函數(shù)y=xα為奇函數(shù)且在(0,+∞)上單調(diào)遞增的a值的個數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin2013°的值屬于區(qū)間( 。
A、(
1
2
,1)
B、(0,
1
2
C、(-1,-
1
2
D、(-
1
2
,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}(n∈N*)是各項(xiàng)為正數(shù)的等比數(shù)列,q是其公比,Kn是其前n項(xiàng)的積,且K5<K6,K6=K7>K8,則下列結(jié)論錯誤的是( 。
A、0<q<1
B、a7=1
C、K9>K5
D、K6與K7均為Kn的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)隨機(jī)變量ξ服從正態(tài)分布N(0,σ2),若P(ξ<-1)=0.2,則P(-1<ξ<1)=( 。
A、0.2B、0.3
C、0.4D、0.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的方程3x=a2+2a在(-∞,1]上有解,則實(shí)數(shù)a的取值范圍是(  )
A、[-2,-1)∪(0,1]
B、[-3,-2)∪[0,1]
C、[-3,-2)∪(0,1]
D、[-2,-1)∪[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式(
1
2
-x)(x-
1
3
)>0的解集為( 。
A、{x|
1
3
<x<
1
2
}
B、{x|x>
1
2
}
C、{x|x<
1
3
}
D、{x|x<
1
3
或x>
1
2
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=3ax2+2bx+c,且有a+b+c=0,f(0)>0,f(1)>0.
(Ⅰ)求證:a>0,且-2<
b
a
<-1;
(Ⅱ)求證:函數(shù)y=f(x)在區(qū)間(0,1)內(nèi)有兩個不同的零點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案