已知數(shù)列{an}中,an=
n
n-15.6
(n∈N*),求數(shù)列{an}的最大項.
考點:數(shù)列的函數(shù)特性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:an=
n
n-15.6
=1+
15.6
n-15.6
,當(dāng)n<16時,an<1;當(dāng)n≥16時,an>1,且an單調(diào)遞減.即可得出.
解答: 解:an=
n
n-15.6
=1+
15.6
n-15.6
,
當(dāng)n<16時,an<1;當(dāng)n≥16時,an>1,且an單調(diào)遞減.
因此數(shù)列{an}的最大項是第16項.
點評:本題考查了數(shù)列的單調(diào)性,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足f(1-x)=2+x,則f(a2+4)的值為(  )
A、3-a
B、a2+6
C、-a2-1
D、-a2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線x2=8(y+8)與y軸交點為M,動點P,Q在拋物線上滑動,且
MP
MQ
=0
(1)求PQ中點R的軌跡方程W;
(2)點A,B,C,D在W上,A,D關(guān)于y軸對稱,過點D作切線l,且BC與l平行,點D到AB,AC的距離為d1,d2,且d1+d2=
2
|AD|,證明:△ABC為直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的二次方程anx2-an+1x+1=0(n∈N+)的兩根α,β滿足6α-2αβ+6β=3,且a1=1.
(1)試用an表示an+1
(2)求證:{an-
2
3
}是等比數(shù)列
(3)求數(shù)列的通項公式an
(4)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有5名男生與4名女生,其中包括男生甲與女生乙,選出3名男生和2名女生排成一排:
(1)如果男生甲與女生乙要排在一起,共有多少種排法?
(2)如果男生甲不能排頭,并且女生乙不能排尾,共有多少種排法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠為了對新研發(fā)的一種產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到如下數(shù)據(jù).
單位x(元)88.28.48.68.89
銷量y(件)908483807568
(1)若y與x的線性關(guān)系為:
y
=bx+250,求b.
(2)預(yù)計在今后的銷售中,銷量y與單價仍然服從(1)中的有關(guān)系,且該產(chǎn)品的成本為4元/件,為了使工廠獲得最大利潤,該產(chǎn)品的單價應(yīng)定為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,已知b2+c2=a2-bc.
(1)求A的大;
(2)如果cosB=
6
3
,b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+alnx
(1)若f(x)在x=1處取得極值,求常數(shù)a的值;
(2)若函數(shù)g(x)=f(x)+
2
x
在[1,4]上是減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos(2x+θ)(0<θ<π),若y=f(x)f′(x)的圖象關(guān)于x=
π
6
對稱,則θ=
 

查看答案和解析>>

同步練習(xí)冊答案