已知圓,直線,。
(1)證明:不論取什么實(shí)數(shù),直線與圓恒交于兩點(diǎn);
(2)求直線被圓截得的弦長(zhǎng)最小時(shí)的方程.
(1)見解析;(2)2x-y-5=0
解析試題分析:(1)直線與圓恒有交點(diǎn),說明直線恒過的定點(diǎn)在圓內(nèi),所以關(guān)鍵是找到直線恒過的定點(diǎn),要把直線改寫成的形式,然后令m的系數(shù)為零即可.(2)圓的弦長(zhǎng)最小值的計(jì)算,常用兩種方法:第一、通過弦長(zhǎng)的計(jì)算再求最小值;第二、通過計(jì)算最長(zhǎng)的弦心距來研究最短的弦.
試題解析:(1)證法1:的方程,
即恒過定點(diǎn)
圓心坐標(biāo)為,半徑,,
∴點(diǎn)在圓內(nèi),從而直線恒與圓相交于兩點(diǎn)。
證法2:圓心到直線的距離,
,所以直線恒與圓相交于兩點(diǎn)。
(2)弦長(zhǎng)最小時(shí),,,,
代入,
得的方程為。
考點(diǎn):1.直線過定的求法.2.圓中最短弦的兩種常用計(jì)算方案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)求圓心在軸上,且與直線相切于點(diǎn)的圓的方程;
(2)已知圓過點(diǎn),且與圓關(guān)于直線對(duì)稱,求圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知圓心在軸上,半徑為的圓位于軸的右側(cè),且與軸相切,
(Ⅰ)求圓的方程;
(Ⅱ)若橢圓的離心率為,且左右焦點(diǎn)為,試探究在圓上是否存在點(diǎn),使得為直角三角形?若存在,請(qǐng)指出共有幾個(gè)這樣的點(diǎn)?并說明理由(不必具體求出這些點(diǎn)的坐標(biāo))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)和圓:.
(Ⅰ)過點(diǎn)的直線被圓所截得的弦長(zhǎng)為,求直線的方程;
(Ⅱ)試探究是否存在這樣的點(diǎn):是圓內(nèi)部的整點(diǎn)(平面內(nèi)橫、縱坐標(biāo)均為整數(shù)的點(diǎn)稱為整點(diǎn)),且△OEM的面積?若存在,求出點(diǎn)的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓A過點(diǎn),且與圓B:關(guān)于直線對(duì)稱.
(1)求圓A的方程;
(2)若HE、HF是圓A的兩條切線,E、F是切點(diǎn),求的最小值。
(3)過平面上一點(diǎn)向圓A和圓B各引一條切線,切點(diǎn)分別為C、D,設(shè),求證:平面上存在一定點(diǎn)M使得Q到M的距離為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知半徑為的⊙與軸交于、兩點(diǎn),為⊙的切線,切點(diǎn)為,且在第一象限,圓心的坐標(biāo)為,二次函數(shù)的圖象經(jīng)過、兩點(diǎn).
(1)求二次函數(shù)的解析式;
(2)求切線的函數(shù)解析式;
(3)線段上是否存在一點(diǎn),使得以、、為頂點(diǎn)的三角形與相似.若存在,請(qǐng)求出所有符合條件的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
有一個(gè)不透明的袋子,裝有4個(gè)完全相同的小球,球上分別編有數(shù)字1,2,3,4,
(1)若逐個(gè)不放回取球兩次,求第一次取到球的編號(hào)為偶數(shù)且兩個(gè)球的編號(hào)之和能被3整除的概率;
(2)若先從袋中隨機(jī)取一個(gè)球,該球的編號(hào)為a,將球放回袋中,然后再從袋中隨機(jī)取一個(gè)球,該球的編號(hào)為b,求直線ax+by+1=0與圓有公共點(diǎn)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知:以點(diǎn)C (t, )(t∈R , t ≠ 0)為圓心的圓與軸交于點(diǎn)O, A,與y軸交于點(diǎn)O, B,其中O為原點(diǎn).
(1)求證:△OAB的面積為定值;
(2)設(shè)直線y = –2x+4與圓C交于點(diǎn)M, N,若|OM| = |ON|,求圓C的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com