【題目】如圖,在四棱錐PABCD中,底面ABCD為菱形,PA⊥平面ABCD,∠ABC60°,點(diǎn)E,F分別是BCPC的中點(diǎn),用向量方法解決以下問題:

1)求異面直線AEPD所成角的大;

2)若ABAP,求二面角EAFC的余弦值的大小.

【答案】12

【解析】

1)推導(dǎo)出,,,從而平面,以為原點(diǎn),軸,軸,軸,建立空間直角坐標(biāo)系,利用向量法能求出異面直線所成角的大。

2 求出平面的法向量和平面的法向量,利用向量法能求出二面角的余弦值的大。

1)由四邊形為菱形,,

可得為正三角形.因?yàn)?/span>的中點(diǎn),所以

,因此

為原點(diǎn),軸,軸,軸,建立空間直角坐標(biāo)系,如圖:

設(shè),,則0,,0,,0,,2,

0,,,2,,

,

異面直線所成角的大小為

2,

設(shè),則,

0,,0,1,,0,,,

0,,,,,,

設(shè)平面的法向量,,

,取,得,2,

設(shè)平面的法向量,,,

,取,得,

設(shè)二面角的平面角為,

,

二面角的余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“割圓術(shù)”是劉徽最突出的數(shù)學(xué)成就之一,他在《九章算術(shù)注》中提出割圓術(shù),并作為計(jì)算圓的周長(zhǎng),面積已經(jīng)圓周率的基礎(chǔ),劉徽把圓內(nèi)接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個(gè)近似數(shù)值,這個(gè)結(jié)果是當(dāng)時(shí)世界上圓周率計(jì)算的最精確數(shù)據(jù).如圖,當(dāng)分割到圓內(nèi)接正六邊形時(shí),某同學(xué)利用計(jì)算機(jī)隨機(jī)模擬法向圓內(nèi)隨機(jī)投擲點(diǎn),計(jì)算得出該點(diǎn)落在正六邊形內(nèi)的頻率為0.8269,那么通過該實(shí)驗(yàn)計(jì)算出來的圓周率近似值為(參考數(shù)據(jù):

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖已知橢圓,是長(zhǎng)軸的一個(gè)端點(diǎn),弦過橢圓的中心,且,.

(Ⅰ)求橢圓的方程:

(Ⅱ)設(shè)為橢圓上異于且不重合的兩點(diǎn),且的平分線總是垂直于軸,是否存在實(shí)數(shù),使得,若存在,請(qǐng)求出的最大值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線不與坐標(biāo)軸垂直,且與拋物線有且只有一個(gè)公共點(diǎn).

1)當(dāng)點(diǎn)的坐標(biāo)為時(shí),求直線的方程;

2)設(shè)直線軸的交點(diǎn)為,過點(diǎn)且與直線垂直的直線交拋物線,兩點(diǎn).當(dāng)時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,底面四邊形為直角梯形,,,為線段上一點(diǎn).

(1)若,則在線段上是否存在點(diǎn),使得平面?若存在,請(qǐng)確定點(diǎn)的位置;若不存在,請(qǐng)說明理由

(2)己知,若異面直線角,二而角的余弦值為,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】利用一半徑為4cm的圓形紙片(圓心為O)制作一個(gè)正四棱錐.方法如下:

(1)O為圓心制作一個(gè)小的圓;

(2)在小的圓內(nèi)制作一內(nèi)接正方形ABCD;

(3)以正方形ABCD的各邊向外作等腰三角形,使等腰三角形的頂點(diǎn)落在大圓上(如圖);

(4)將正方形ABCD作為正四棱錐的底,四個(gè)等腰三角形作為正四棱錐的側(cè)面折起,使四個(gè)等腰三角形的頂點(diǎn)重合,問:要使所制作的正四棱錐體積最大,則小圓的半徑為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐中,是邊長(zhǎng)為的正三角形,點(diǎn)為正方形的中心,為線段的中點(diǎn),.則下列結(jié)論正確的是(

A.平面平面

B.直線是異面直線

C.線段的長(zhǎng)度相等

D.直線與平面所成的角的余弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,設(shè)命題函數(shù)R上單調(diào)遞減,命題對(duì)任意實(shí)數(shù)x,不等式恒成立.

1)求非q為真時(shí),實(shí)數(shù)c的取值范圍;

2)如果命題為真命題,且為假命題,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}滿足a35a42a23,又等比數(shù)列{bn}中,b13且公比q3.

1)求數(shù)列{an},{bn}的通項(xiàng)公式;

2)若cnan+bn,求數(shù)列{cn}的前n項(xiàng)和Sn.

查看答案和解析>>

同步練習(xí)冊(cè)答案