如圖,三棱錐S-ABC中,側(cè)面SAB與側(cè)面SAC均為邊長(zhǎng)為2的正三角形,且∠BAC=90°,O、D分別為BC、AB的中點(diǎn).
(Ⅰ)證明:SO⊥平面ABC;
(Ⅱ)求四棱錐S-ACOD的體積.
考點(diǎn):棱柱、棱錐、棱臺(tái)的體積,直線與平面垂直的判定
專題:空間位置關(guān)系與距離
分析:(Ⅰ)連結(jié)OA,△ABC為等腰直角三角形,由已知得AO⊥BC,SO⊥BC,SO⊥AO.由此能證明SO⊥平面ABC.
(Ⅱ)由已知得DO⊥AD,DO=
1
2
AC=1
.SO⊥平面ABC,由此能求出四棱錐S-ACOD的體積.
解答: (本題滿分12分)
解:(Ⅰ)證明:由題設(shè)AB=AC=SB=SC=SA,
連結(jié)OA,△ABC為等腰直角三角形,
所以OA=OB=OC=
2
2
SA=
2
,且AO⊥BC,
又△SBC為等腰三角形,
故SO⊥BC,且SO=
2
2
SA=
2
,
從而OA2+SO2=SA2
所以△SOA為直角三角形,SO⊥AO.
又AO∩BO=O.所以SO⊥平面ABC.…(6分)
(Ⅱ)∵BO=CO,BD=AD,
∴AC∥DO,∴DO⊥AD,DO=
1
2
AC=1

SACOD=
1
2
×(OD+AC)×AD=
1
2
×(1+2)×1=
3
2
,
由(Ⅰ)知SO⊥平面ABC,
VS-ACOD=
1
3
SACOD•SO=
1
3
×
3
2
×
2
=
2
2
.…(12分)
點(diǎn)評(píng):本題考查直線與平面垂直的證明,考查四棱錐體積的求法,解題時(shí)要注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}中,a3、a15是方程x2-6x+8=0的兩根,則a1a9a17=( 。
A、16
2
B、-16
2
C、16
2
或-16
2
D、64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,單擺從某點(diǎn)開(kāi)始來(lái)回?cái)[動(dòng),離開(kāi)平衡位置O的距離s cm和時(shí)間t s的函數(shù)關(guān)系式為s=6sin(2πt+
π
6
),那么單擺來(lái)回?cái)[動(dòng)一次所需的時(shí)間為(  )
A、2π s
B、π s
C、0.5 s
D、1 s

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,三棱柱ABC-A1B1C1中,側(cè)棱垂直底面,∠ACB=90°,AC=2,BC=4,AA1=4,D是棱AA1的中點(diǎn).
(1)證明:平面BDC1⊥平面BDC;
(2)求三棱錐C1-BCD外接球與三棱柱ABC-A1B1C1外接球的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2ex-ax-2(a∈R)
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)x≥0時(shí),f(x)≥0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=loga
x-5
x+5
(a>0且a≠1).
(1)判定f(x)在x∈(-∞,-5)上的單調(diào)性,并證明;
(2)設(shè)g(x)=1+loga(x-3),若方程f(x)=g(x)有實(shí)根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x|x|-2x.
(1)求方程f(x)=0的解;
(2)作出函數(shù)y=f(x)的草圖,并指出它的遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線l:y=kx-10與圓C:x2+y2+mx+2y-4=0交于M、N兩點(diǎn),且M、N關(guān)于直線m:x+2y=0對(duì)稱,
(1)求直線l截圓所得的弦長(zhǎng);
(2)直線n:y=3x-5,過(guò)點(diǎn)C的直線與直線l、n分別交于P、Q兩點(diǎn),C恰為PQ的中點(diǎn),求直線PQ的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)M是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)上一點(diǎn),F(xiàn)1,F(xiàn)2分別為C的左右焦點(diǎn),|F1F2|=2
3
,∠F1MF2=60°,△F1MF2的面積為
3
3

(1)求橢圓C的方程;
(2)設(shè)過(guò)橢圓右焦點(diǎn)F2的直線l和橢圓交于兩點(diǎn)A,B,是否存在直線l,使得△OAF2與△OBF2的面積比值為2?若存在,求出直線l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案