設{an}是公比不為1的等比數(shù)列,其前n項和為Sn,且a5,a3,a4成等差數(shù)列.
(1)求數(shù)列{an}的公比;
(2)證明:對任意k∈N*,Sk+2,Sk,Sk+1成等差數(shù)列.
(1)q=-2(2)見解析
【解析】(1)設數(shù)列{an}的公比為q(q≠0,q≠1),
由a5,a3,a4成等差數(shù)列,得2a3=a5+a4,
即2a1q2=a1q4+a1q3,
由a1≠0,q≠0得q2+q-2=0,解得q=-2或1(舍去),所以q=-2.
(2)法一 對任意k∈N*,
Sk+2+Sk+1-2Sk=(Sk+2-Sk)+(Sk+1-Sk)
=ak+1+ak+2+ak+1
=2ak+1+ak+1·(-2)=0,
所以,對任意k∈N*,Sk+2,Sk,Sk+1成等差數(shù)列.
法二:對任意k∈N*,2Sk=,
Sk+2+Sk+1=+=,
2Sk-(Sk+2+Sk+1)=-
= [2(1-qk)-(2-qk+2-qk+1)]= (q2+q-2)=0,
因此,對任意k∈N*,Sk+2,Sk,Sk+1成等差數(shù)列.
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪專題復習知能提升演練1-6-3練習卷(解析版) 題型:選擇題
等軸雙曲線C的中心在原點,焦點在x軸上,C與拋物線y2=16x的準線交于A,B兩點,|AB|=4,則C的實軸長為( ).
A. B.2 C.4 D.8
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪專題復習知能提升演練1-5-2練習卷(解析版) 題型:選擇題
如圖所示,在四邊形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.將△ADB沿BD折起,使平面ABD⊥平面BCD,構成三棱錐A-BCD.則在三棱錐A-BCD中,下列命題正確的是( ).
A.平面ABD⊥平面ABC
B.平面ADC⊥平面BDC
C.平面ABC⊥平面BDC
D.平面ADC⊥平面ABC
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪專題復習知能提升演練1-4-2練習卷(解析版) 題型:解答題
已知等差數(shù)列{an}滿足a2=0,a6+a8=-10.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪專題復習知能提升演練1-4-2練習卷(解析版) 題型:選擇題
已知數(shù)列{an}滿足an+1=+,且a1=,則該數(shù)列的前2 013項的和等于( ).
A. B.3019 C.1508 D. 013
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪專題復習知能提升演練1-4-1練習卷(解析版) 題型:選擇題
設等差數(shù)列{an}的前n項和為Sn,Sm-1=-2,Sm=0,
Sm+1=3,則m等于( ).
A.3 B.4 C.5 D.6
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪專題復習知能提升演練1-3-2練習卷(解析版) 題型:填空題
△ABC的內角A,B,C的對邊分別為a,b,c,已知b=2,B=,C=,則△ABC的面積為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪專題復習知能提升演練1-3-1練習卷(解析版) 題型:選擇題
函數(shù)f(x)=sin 在區(qū)間上的最小值為 ( ).
A.-1 B.- C. D.0
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪專題復習知能提升演練1-1-3練習卷(解析版) 題型:選擇題
已知一元二次不等式f(x)<0的解集為,則f(10x)>0的解集為( ).
A.{x|x<-1或x>-lg 2}
B.{x|-1<x<-lg 2}
C.{x|x>-lg 2}
D.{x|x<-lg 2}
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com