設(shè)函數(shù)f(x)在R上是偶函數(shù),在區(qū)間(-∞,0)上遞增,且f(2a2+a+1)<f(2a2-2a+3),求a的取值范圍.

解:由f(x)在R上是偶函數(shù),在區(qū)間(-∞,0)上遞增,
可知f(x)在(0,+∞)上遞減.
∵2a2+a+1=2(a+2+>0,2a2-2a+3=2(a-2+>0,且f(2a2+a+1)<f(2a2-2a+3),
∴2a2+a+1>2a2-2a+3,即3a-2>0,解得a>
所以實(shí)數(shù)a的取值范圍為:a>
分析:利用函數(shù)f(x)的奇偶性、單調(diào)性可判斷函數(shù)在(0,+∞)上的單調(diào)性,根據(jù)2a2+a+1,2a2-2a+3的范圍可知其大小關(guān)系,解出即可.
點(diǎn)評(píng):本題考查函數(shù)單調(diào)性的性質(zhì)及其應(yīng)用,考查抽象不等式的求解,解決本題的關(guān)鍵是利用函數(shù)的性質(zhì)去掉不等式中的符號(hào)“f”.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)在R上滿足f(3+x)=f(3-x),f(8+x)=f(8-x),且在閉區(qū)間[0,8]上只有f(1)=f(5)=f(7)=0.
(1)求證函數(shù)f(x)是周期函數(shù);
(2)求函數(shù)f(x)在閉區(qū)間[-10,0]上的所有零點(diǎn);
(3)求函數(shù)f(x)在閉區(qū)間[-2012,2012]上的零點(diǎn)個(gè)數(shù)及所有零點(diǎn)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•重慶)設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(1-x)f′(x)的圖象如圖所示,則下列結(jié)論中一定成立的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•保定一模)設(shè)函數(shù)f(x)在R上是可導(dǎo)的偶函數(shù),且滿足f (x-1)=-f (x+1),則曲線y=f (x)在點(diǎn)x=10處的切線的斜率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)在R上的導(dǎo)函數(shù)為f′(x),且2f(x)+xf′(x)<0,下面的不等式在R上恒成立的是( 。
A、f(x)>0B、f(x)<0C、f(x)>xD、f(x)<x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)在R上的導(dǎo)函數(shù)為f′(x),若2f(x)+x?f′(x)<0恒成立,下列說(shuō)法正確的是(  )
A、函數(shù)x2f(x)有最小值0B、函數(shù)x2f(x)有最大值0C、函數(shù)x2f(x)在R上是增函數(shù)D、函數(shù)x2f(x)在R上是減函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案